In the societal tradeoffs problem, each agent perceives certain quantitative tradeoffs between pairs of activities, and the goal is to aggregate these tradeoffs across agents. This is a problem in social choice; specifically, it is a type of quantitative judgment aggregation problem. A natural rule for this problem was axiomatized by Conitzer et al. [AAAI 2016]; they also provided several algorithms for computing the outcomes of this rule. In this paper, we present a significantly improved algorithm and evaluate it experimentally. Our algorithm is based on a tight connection to minimum-cost flow that we exhibit. We also show that our algorithm cannot be improved without breakthroughs on min-cost flow. 
                        more » 
                        « less   
                    This content will become publicly available on December 10, 2025
                            
                            Aggregating Quantitative Relative Judgments: From Social Choice to Ranking Prediction
                        
                    
    
            Quantitative Relative Judgment Aggregation (QRJA) is a new research topic in (computational) social choice. In the QRJA model, agents provide judgments on the relative quality of different candidates, and the goal is to aggregate these judgments across all agents. In this work, our main conceptual contribution is to explore the interplay between QRJA in a social choice context and its application to ranking prediction. We observe that in QRJA, judges do not have to be people with subjective opinions; for example, a race can be viewed as a "judgment" on the contestants' relative abilities. This allows us to aggregate results from multiple races to evaluate the contestants' true qualities. At a technical level, we introduce new aggregation rules for QRJA and study their structural and computational properties. We evaluate the proposed methods on data from various real races and show that QRJA-based methods offer effective and interpretable ranking predictions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2307106
- PAR ID:
- 10559237
- Publisher / Repository:
- Curran Associates
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Rank aggregation is widely used in group decision making and many other applications, where it is of interest to consolidate heterogeneous ordered lists. Oftentimes, these rankings may involve a large number of alternatives, contain ties, and/or be incomplete, all of which complicate the use of robust aggregation methods. In particular, these characteristics have limited the applicability of the aggregation framework based on the Kemeny-Snell distance, which satisfies key social choice properties that have been shown to engender improved decisions. This work introduces a binary programming formulation for the generalized Kemeny rank aggregation problem—whose ranking inputs may be complete and incomplete, with and without ties. Moreover, it leverages the equivalence of two ranking aggregation problems, namely, that of minimizing the Kemeny-Snell distance and of maximizing the Kendall-τ correlation, to compare the newly introduced binary programming formulation to a modified version of an existing integer programming formulation associated with the Kendall-τ distance. The new formulation has fewer variables and constraints, which leads to faster solution times. Moreover, we develop a new social choice property, the nonstrict extended Condorcet criterion, which can be regarded as a natural extension of the well-known Condorcet criterion and the Extended Condorcet criterion. Unlike its parent properties, the new property is adequate for handling complete rankings with ties. The property is leveraged to develop a structural decomposition algorithm, through which certain large instances of the NP-hard Kemeny rank aggregation problem can be solved exactly in a practical amount of time. To test the practical implications of the new formulation and social choice property, we work with instances constructed from a probabilistic distribution and with benchmark instances from PrefLib, a library of preference data.more » « less
- 
            Online platforms offer forums with rich, real-world illustrations of moral reasoning. Among these, the r/AmITheAsshole (AITA) subreddit has become a prominent resource for computational research. In AITA, a user (author) describes an interpersonal moral scenario, and other users (commenters) provide moral judgments with reasons for who in the scenario is blameworthy. Prior work has focused on predicting moral judgments from AITA posts and comments. This study introduces the concept of moral sparks—key narrative excerpts that commenters highlight as pivotal to their judgments. Thus, sparks represent heightened moral attention, guiding readers to effective rationales. Through 24,676 posts and 175,988 comments, we demonstrate that research in social psychology on moral judgments extends to real-world scenarios. For example, negative traits (rude) amplify moral attention, whereas sympathetic traits (vulnerable) diminish it. Similarly, linguistic features, such as emotionally charged terms (e.g., anger), heighten moral attention, whereas positive or neutral terms (leisure and bio) attenuate it. Moreover, we find that incorporating moral sparks enhances pretrained language models’ performance on predicting moral judgment, achieving gains in F1 scores of up to 5.5%. These results demonstrate that moral sparks, derived directly from AITA narratives, capture key aspects of moral judgment and perform comparably to prior methods that depend on human annotation or large-scale generative modeling.more » « less
- 
            Given a large number (notationallym) of users' (members or voters) preferences as inputs over a large number of items or candidates (notationallyn), preference queries leverage different preference aggregation methods to aggregate individual preferences in a systematic manner and come up with a single output (either a complete order or top-k, ordered or unordered) that is most representative of the users' preferences. The goal of this1.5 hour lecture style tutorialis to adapt different preference aggregation methods from social choice theories, summarize how existing research has handled fairness over these methods, identify their limitations, and outline new research directions.more » « less
- 
            Abstract Autism spectrum disorder (ASD) is characterized by difficulties in social processes, interactions, and communication. Yet, the neurocognitive bases underlying these difficulties are unclear. Here, we triangulated the ‘trans-diagnostic’ approach to personality, social trait judgments of faces, and neurophysiology to investigate (1) the relative position of autistic traits in a comprehensive social-affective personality space, and (2) the distinct associations between the social-affective personality dimensions and social trait judgment from faces in individuals with ASD and neurotypical individuals. We collected personality and facial judgment data from a large sample of online participants (N = 89 self-identified ASD;N = 307 neurotypical controls). Factor analysis with 33 subscales of 10 social-affective personality questionnaires identified a 4-dimensional personality space. This analysis revealed that ASD and control participants did not differ significantly along the personality dimensions of empathy and prosociality, antisociality, or social agreeableness. However, the ASD participants exhibited a weaker association between prosocial personality dimensions and judgments of facial trustworthiness and warmth than the control participants. Neurophysiological data also indicated that ASD participants had a weaker association with neuronal representations for trustworthiness and warmth from faces. These results suggest that the atypical association between social-affective personality and social trait judgment from faces may contribute to the social and affective difficulties associated with ASD.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
