In recent years, a massive mortality event has killed millions of sea stars, of many different species, along the Pacific coast of North America. This disease event, known as ‘sea star wasting disease’ (SSWD), is linked to viral infection. In one affected sea star (
Sea star wasting disease (SSWD) refers to a suite of gross signs affecting Asteroidea species. These include epidermal lesions, everted viscera, arm autotomy, and ultimately, full body disintegration leading to mortality. The common sea star
- Award ID(s):
- 2049225
- PAR ID:
- 10559314
- Publisher / Repository:
- Marine Ecology Progress Series
- Date Published:
- Journal Name:
- Marine Ecology Progress Series
- Volume:
- 724
- ISSN:
- 0171-8630
- Page Range / eLocation ID:
- 97 to 109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Pisaster ochraceus ), previous work had identified that the elongation factor 1-α locus (EF1A) harbored an intronic insertion allele that is lethal when homozygous yet appears to be maintained at moderate frequency in populations through increased fitness for heterozygotes. The environmental conditions supporting this increased fitness are unknown, but overdominance is often associated with disease. Here, we evaluate populations ofP. ochraceus to identify the relationship between SSWD and EF1A genotype. Our data suggest that there may be significantly decreased occurrence of SSWD in individuals that are heterozygous at this locus. These results suggest further studies are warranted to understand the functional relationship between diversity at EF1A and survival inP. ochraceus . -
Thuesen, Erik V. (Ed.)Long-term datasets can reveal otherwise undetectable ecological trends, illuminating the historical context of contemporary ecosystem states. We used two decades (1997–2019) of scientific trawling data from a subtidal, benthic site in Puget Sound, Washington, USA to test for gradual trends and sudden shifts in total sea star abundance across 11 species. We specifically assessed whether this community responded to the sea star wasting disease (SSWD) epizootic, which began in 2013. We sampled at depths of 10, 25, 50 and 70 m near Port Madison, WA, and obtained long-term water temperature data. To account for species-level differences in SSWD susceptibility, we divided our sea star abundance data into two categories, depending on the extent to which the species is susceptible to SSWD, then conducted parallel analyses for high-susceptibility and moderate-susceptibility species. The abundance of high-susceptibility sea stars declined in 2014 across depths. In contrast, the abundance of moderate-susceptibility species trended downward throughout the years at the deepest depths– 50 and 70 m–and suddenly declined in 2006 across depths. Water temperature was positively correlated with the abundance of moderate-susceptibility species, and uncorrelated with high-susceptibility sea star abundance. The reported emergence of SSWD in Washington State in the summer of 2014 provides a plausible explanation for the subsequent decline in abundance of high-susceptibility species. However, no long-term stressors or mortality events affecting sea stars were reported in Washington State prior to these years, leaving the declines we observed in moderate-susceptibility species preceding the 2013–2015 SSWD epizootic unexplained. These results suggest that the subtidal sea star community in Port Madison is dynamic, and emphasizes the value of long-term datasets for evaluating patterns of change.more » « less
-
Sea star wasting disease (SSWD) refers to a suite of gross pathological signs observed in Asteroidea species. It presents to varying degrees as abnormal posture, epidermal ulceration, arm autotomy and eversion of viscera. We report observations of SSWD in the sunstar Crossaster papposus, the first observations of its kind in Europe. While the exact cause of SSWD remains unknown, studies have proposed pathogenic and environmental-stress pathways for disease outbreaks. Although the present observations do not support a precise aetiology, the presence of SSWD in a keystone predator may have wide reaching ecological and management implications.more » « less
-
Abstract The recent outbreak of Sea Star Wasting Disease (SSWD) is one of the largest marine epizootics in history, but the host-associated microbial community changes specific to disease progression have not been characterized. Here, we sampled the microbiomes of ochre sea stars,
Pisaster ochraceus , through time as animals stayed healthy or became sick and died with SSWD. We found community-wide differences in the microbiomes of sick and healthy sea stars, changes in microbial community composition through disease progression, and a decrease in species richness of the microbiome in late stages of SSWD. Known beneficial taxa (Pseudoalteromonas spp.) decreased in abundance at symptom onset and through disease progression, while known pathogenic (Tenacibaculum spp.) and putatively opportunistic bacteria (Polaribacter spp. andPhaeobacter spp.) increased in abundance in early and late disease stages. Functional profiling revealed microbes more abundant in healthy animals performed functions that inhibit growth of other microbes, including pathogen detection, biosynthesis of secondary metabolites, and degradation of xenobiotics. Changes in microbial composition with disease onset and progression suggest that a microbial imbalance of the host could lead to SSWD or be a consequence of infection by another pathogen. This work highlights the importance of the microbiome in SSWD and also suggests that a healthy microbiome may help confer resistance to SSWD. -
Abstract Beginning in 2013, sea stars throughout the Eastern North Pacific were decimated by wasting disease, also known as “asteroid idiopathic wasting syndrome” (AIWS) due to its elusive aetiology. The geographic extent and taxonomic scale of AIWS meant events leading up to the outbreak were heterogeneous, multifaceted, and oftentimes unobserved; progression from morbidity to death was rapid, leaving few tell‐tale symptoms. Here, we take a forensic genomic approach to discover candidate genes that may help explain sea star wasting syndrome. We report the first genome and annotation for
Pisaster ochraceus , along with differential gene expression (DGE) analyses in four size classes, three tissue types, and in symptomatic and asymptomatic individuals. We integrate nucleotide polymorphisms associated with survivors of the wasting disease outbreak, DGE associated with temperature treatments inP. ochraceus , and DGE associated with wasting in another asteroidPycnopodia helianthoides . InP. ochraceus , we found DGE across all tissues, among size classes, and between asymptomatic and symptomatic individuals; the strongest wasting‐associated DGE signal was in pyloric caecum. We also found previously identified outlier loci co‐occur with differentially expressed genes. In cross‐species comparisons of symptomatic and asymptomatic individuals, consistent responses distinguish genes associated with invertebrate innate immunity and chemical defence, consistent with context‐dependent stress responses, defensive apoptosis, and tissue degradation. Our analyses thus highlight genomic constituents that may link suspected environmental drivers (elevated temperature) with intrinsic differences among individuals (age/size, alleles associated with susceptibility) that elicit organismal responses (e.g., coelomocyte proliferation) and manifest as sea star wasting mass mortality.