skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: De Novo Synthesis of Error‐Free Long Oligos
Abstract This protocol describes the synthesis of long oligonucleotides (up to 401‐mer), their isolation from complex mixtures using the catching‐by‐polymerization (CBP) method, and the selection of error‐free sequence via cloning followed by Sanger sequencing. Oligo synthesis is achieved under standard automated solid‐phase synthesis conditions with only minor yet critical adjustments using readily available reagents. The CBP method involves tagging the full‐length sequence with a polymerizable tagging phosphoramidite (PTP), co‐polymerizing the sequence into a polymer, washing away failure sequences, and cleaving the full‐length sequence from the polymer. Cloning and sequencing guided selection of error‐free sequence overcome the problems of substitution, deletion, and addition errors that cannot be addressed using any other methods, including CBP. Long oligos are needed in many areas such as protein engineering and synthetic biology. The methods described here are particularly important for projects requiring long oligos containing long repeats or stable higher‐order structures, which are difficult or impossible to produce using any other existing technologies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Long oligo synthesis Support Protocol 1: Synthesis of polymerizable tagging phosphoramidite (PTP) Support Protocol 2: Synthesis of 5′‐O‐Bz phosphoramidite Basic Protocol 2: Catching‐by‐polymerization (CBP) purification Basic Protocol 3: Error‐free sequence selection via cloning and sequencing  more » « less
Award ID(s):
1954041 2117318
PAR ID:
10559352
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Current Protocols
Volume:
4
Issue:
10
ISSN:
2691-1299
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The catching-by-polymerization (CBP) oligodeoxynucleotide (oligo or ODN) purification method has been demonstrated suitable for large-scale, parallel, and long oligo purification. The authenticity of the oligos has been verifiedviaDNA sequencing, and gene construction and expression. A remaining obstacle to the practical utility of the CBP method is affordable polymerizable tagging phosphoramidites (PTPs) that are needed for the method. In this article, we report scalable synthesis of the four nucleoside (dA, dC, dG and T) precursors to the PTPs using a route having five steps from inexpensive starting materials. The overall yields ranged from 21% to 35%. The scales of the synthesis presented here are up to 2.1 grams of the precursors. Because the syntheses are chromatography-free, further scaling up the syntheses of the precursors have become more feasible. With the precursors, the PTPs can be synthesized in one step using standard methods involving a chromatography purification. 
    more » « less
  2. The longest oligos that can be chemically synthesized using known methods are typically considered to be 200-mers. Here, we report direct synthesis of an 800-mer green fluorescent protein (GFP) gene and a 1,728-mer Φ29 DNA polymerase gene on an automated synthesizer. Key innovations that enabled the breakthrough include conducting the synthesis on the smooth surface of glass wool or glass bead rather than within the pores of traditional solid supports, and the use of the powerful catching-by-polymerization (CBP) method for the isolation of the full-length oligos from the crude mixture. Conducting the synthesis on smooth surface not only eliminated the steric hindrance that would otherwise prevent long oligo assembly, but also, surprisingly, drastically reduced the errors that commonly occur in traditional oligo synthesis. The long oligos were characterized by cloning followed by Sanger sequencing. We anticipate that the new method for long oligo synthesis will have a significant impact on projects in areas such as synthetic biology, gene editing, protein engineering, and many others. 
    more » « less
  3. Abstract This protocol describes a method for the incorporation of sensitive functional groups into oligodeoxynucleotides (ODNs). The nucleophile‐sensitive epigeneticN4‐acetyldeoxycytosine (4acC) DNA modification is used as an example, but other sensitive groups can also be incorporated, e.g., alkyl halide, α‐haloamide, alkyl ester, aryl ester, thioester, and chloropurine groups, all of which are unstable under the basic and nucleophilic deprotection and cleavage conditions used in standard ODN synthesis methods. The method uses a 1,3‐dithian‐2‐yl‐methoxycarbonyl (Dmoc) group that carries a methyl group at the carbon of the methoxy moiety (meDmoc) for the protection of exo‐amines of nucleobases. The growing ODN is anchored to a solid support via a Dmoc linker. With these protecting and linking strategies, ODN deprotection and cleavage are achieved without using any strong bases and nucleophiles. Instead, they can be carried out under nearly neutral non‐nucleophilic oxidative conditions. To increase the length of ODNs that can be synthesized using the meDmoc method, the protocol also describes the synthesis of a PEGylated Dmoc (pDmoc) phosphoramidite. With some of the nucleotides being incorporated with pDmoc‐CE phosphoramidite, the growing ODN on the solid support carries PEG moieties and becomes more soluble, thus enabling longer ODN synthesis. The ODN synthesis method described in this protocol is expected to make many sensitive ODNs that are difficult to synthesize accessible to researchers in multiple areas, such as epigenetics, nanopore sequencing, nucleic acid‐protein interactions, antisense drug development, DNA alkylation carcinogenesis, and DNA nanotechnology. © 2024 Wiley Periodicals LLC. Basic Protocol: Sensitive ODN synthesis Support Protocol 1: Synthesis of meDmoc‐CE phosphoramidites Support Protocol 2: Synthesis of a pDmoc‐CE phosphoramidite 
    more » « less
  4. Abstract Promoters and the noncoding sequences that drive their function are fundamental aspects of genes that are critical to their regulation. The transcription preinitiation complex binds and assembles on promoters where it facilitates transcription. The transcription start site (TSS) is located downstream of the promoter sequence and is defined as the location in the genome where polymerase begins transcribing DNA into RNA. Knowing the location of TSSs is useful for annotation of genes, identification of non‐coding sequences important to gene regulation, detection of alternative TSSs, and understanding of 5′ UTR content. Several existing techniques make it possible to accurately identify TSSs, but are often difficult to perform experimentally, require large amounts of input RNA, or are unable to identify a large number of TSSs from a single sample. Many of these protocols take advantage of template switching reverse transcriptases (TSRTs), which reliably place an adaptor at the 5′ end of a first strand synthesis of cDNA. Here, we introduce a protocol that exploits TSRT activity combined with rolling circle amplification to identify TSSs with several unique advantages over existing methods. Sequence adaptors are placed on the 5′ and 3′ end of the full‐length cDNA copy of a transcript. A splint compatible with those adaptors is then used to circularize the full‐length cDNA. Linear DNA containing concatemers of the cDNA are generated using rolling circle amplification, and a sequencing library is formed by fragmenting the concatemers. This protocol is straightforward to execute, requiring limited bench time with relatively stable reagents. Using extremely low amounts of RNA input, this protocol produces large numbers of accurate, deduplicated TSSs genome wide. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Splint generation Basic Protocol 2: RNA extraction Basic Protocol 3: cDNA synthesis Basic Protocol 4: cDNA circularization and amplification Basic Protocol 5: Library generation 
    more » « less
  5. Long oligodeoxynucleotides (ODNs) are segments of DNAs having over one hundred nucleotides (nt). They are typically assembled using enzymatic methods such as PCR and ligation from shorter 20 to 60 nt ODNs produced by automated de novo chemical synthesis. While these methods have made many projects in areas such as synthetic biology and protein engineering possible, they have various drawbacks. For example, they cannot produce genes and genomes with long repeats and have difficulty to produce sequences containing stable secondary structures. Here, we report a direct de novo chemical synthesis of 400 nt ODNs, and their isolation from the complex reaction mixture using the catching-by-polymerization (CBP) method. To determine the authenticity of the ODNs, 399 and 401 nt ODNs were synthesized and purified with CBP. The two were joined together using Gibson assembly to give the 800 nt green fluorescent protein (GFP) gene construct. The sequence of the construct was verified via Sanger sequencing. To demonstrate the potential use of the long ODN synthesis method, the GFP gene was expressed inE. coli. The long ODN synthesis and isolation method presented here provides a pathway to the production of genes and genomes containing long repeats or stable secondary structures that cannot be produced or are highly challenging to produce using existing technologies. 
    more » « less