skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tangled banks, braided rivers, and complex hierarchies: beyond microevolution and macroevolution
Abstract Ever since the Modern Synthesis, a debate about the relationship between microevolution and macroevolution has persisted—specifically, whether they are equivalent, distinct, or explain one another. How one answers these questions has become shorthand for a much broader set of theoretical debates in evolutionary biology. Here, we examine microevolution and macroevolution in the context of the vast proliferation of data, knowledge, and theory since the advent of the Modern Synthesis. We suggest that traditional views on microevolution and macroevolution are too binary and reductive given current empirical and theoretical advances in biology. For example, patterns and processes are interconnected at various temporal and spatial scales and among hierarchical entities, rather than defining micro- or macro-domains. Further, biological entities have variably fuzzy boundaries, resulting in complex evolutionary processes that influence macroevolution occuring at both micro- and macro-levels. In addition, conceptual advances in phylodynamics have yet to be fully integrated with contemporary macroevolutionary approaches. Finally, holding microevolution and macroevolution as distinct domains thwarts synthesis and collaboration on important research questions. Instead, we propose that the focal entities and processes considered by evolutionary studies be contextualized within the complexity of the multidimensional, multimodal, multilevel phylogenetic system.  more » « less
Award ID(s):
2225011
PAR ID:
10559442
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Journal of Evolutionary Biology
Volume:
37
Issue:
12
ISSN:
1420-9101
Format(s):
Medium: X Size: p. 1402-1412
Size(s):
p. 1402-1412
Sponsoring Org:
National Science Foundation
More Like this
  1. Explaining broad molecular, phenotypic and species biodiversity patterns necessitates a unifying framework spanning multiple evolutionary scales. Here we argue that although substantial effort has been made to reconcile microevolution and macroevolution, much work remains to identify the links between biological processes at play. We highlight four major questions of evolutionary biology whose solutions require conceptual bridges between micro and macroevolution. We review potential avenues for future research to establish how mechanisms at one scale (drift, mutation, migration, selection) translate to processes at the other scale (speciation, extinction, biogeographic dispersal) and vice versa. We propose ways in which current comparative methods to infer molecular evolution, phenotypic evolution and species diversification could be improved to specifically address these questions. We conclude that researchers are in a better position than ever before to build a synthesis to understand how microevolutionary dynamics unfold over millions of years. 
    more » « less
  2. Abstract The study of biodiversity started as a single unified field that spanned both ecology and evolution and both macro and micro phenomena. But over the 20th century, major trends drove ecology and evolution apart and pushed an emphasis towards the micro perspective in both disciplines. Macroecology and macroevolution re‐emerged as self‐consciously distinct fields in the 1970s and 1980s, but they remain largely separated from each other. Here, we argue that despite the challenges, it is worth working to combine macroecology and macroevolution. We present 25 fundamental questions about biodiversity that are answerable only with a mixture of the views and tools of both macroecology and macroevolution. 
    more » « less
  3. Macroevolutionary biologists have classically rejected the notion that higher-level patterns of divergence arise through microevolutionary processes acting within populations. For morphology, this consensus partly derives from the inability of quantitative genetics models to correctly predict the behaviour of evolutionary processes at the scale of millions of years. Developmental studies (evo-devo) have been proposed to reconcile micro- and macroevolution. However, there has been little progress in establishing a formal framework to apply evo-devo models of phenotypic diversification. Here we reframe this issue by asking whether using evo-devo models to quantify biological variation can improve the explanatory power of comparative models, thus helping us bridge the gap between micro- and macroevolution. We test this prediction by evaluating the evolution of primate lower molars in a comprehensive dataset densely sampled across living and extinct taxa. Our results suggest that biologically informed morphospaces alongside quantitative genetics models allow a seamless transition between the micro- and macroscales, whereas biologically uninformed spaces do not. We show that the adaptive landscape for primate teeth is corridor like, with changes in morphology within the corridor being nearly neutral. Overall, our framework provides a basis for integrating evo-devo into the modern synthesis, allowing an operational way to evaluate the ultimate causes of macroevolution. 
    more » « less
  4. null (Ed.)
    Linking interspecific interactions (e.g., mutualism, competition, predation, parasitism) to macroevolution (evolutionary change on deep timescales) is a key goal in biology. The role of species interactions in shaping macroevolutionary trajectories has been studied for centuries and remains a cutting-edge topic of current research. However, despite its deep historical roots, classic and current approaches to this topic are highly diverse. Here, we combine historical and contemporary perspectives on the study of ecological interactions in macroevolution, synthesizing ideas across eras to build a zoomed-out picture of the big questions at the nexus of ecology and macroevolution. We discuss the trajectory of this important and challenging field, dividing research into work done before the 1970s, research between 1970 and 2005, and work done since 2005. We argue that in response to long-standing questions in paleobiology, evidence accumulated to date has demonstrated that biotic interactions (including mutualism) can influence lineage diversification and trait evolution over macroevolutionary timescales, and we outline major open questions for future research in the field. 
    more » « less
  5. Friedberg, Iddo (Ed.)
    Across a variety of biological datasets, from genomes to conservation to the fossil record, evolutionary rates appear to increase toward the present or over short time scales. This has long been seen as an indication of processes operating differently at different time scales, even potentially as an indicator of a need for new theory connecting macroevolution and microevolution. Here we introduce a set of models that assess the relationship between rate and time and demonstrate that these patterns are statistical artifacts of time-independent errors present across ecological and evolutionary datasets, which produce hyperbolic patterns of rates through time. We show that plotting a noisy numerator divided by time versus time leads to the observed hyperbolic pattern; in fact, randomizing the amount of change over time generates patterns functionally identical to observed patterns. Ignoring errors can not only obscure true patterns but create novel patterns that have long misled scientists. 
    more » « less