Abstract Landscapes of fear can determine the dynamics of entire ecosystems. In response to perceived predation risk, prey can show physiological, behavioral, or morphological trait changes to avoid predation. This in turn can indirectly affect other species by modifying species interactions (e.g., altered feeding), with knock‐on effects, such as trophic cascades, on the wider ecosystem. While such indirect effects stemming from the fear of predation have received extensive attention for herbivore–plant and predator–prey interactions, much less is known about how they alter parasite–host interactions and wildlife diseases. In this synthesis, we present a conceptual framework for how predation risk—as perceived by organisms that serve as hosts—can affect parasite–host interactions, with implications for infectious disease dynamics. By basing our approach on recent conceptual advances with respect to predation risk effects, we aim to expand this general framework to include parasite–host interactions and diseases. We further identify pathways through which parasite–host interactions can be affected, for example, through altered parasite avoidance behavior or tolerance of hosts to infections, and discuss the wider relevance of predation risk for parasite and host populations, including heuristic projections to population‐level dynamics. Finally, we highlight the current unknowns, specifically the quantitative links from individual‐level processes to population dynamics and community structure, and emphasize approaches to address these knowledge gaps.
more »
« less
Individual variation underlies large‐scale patterns: Host conditions and behavior affect parasitism
Abstract Identifying the factors that affect host–parasite interactions is essential for understanding the ecology and dynamics of vector‐borne diseases and may be an important component of predicting human disease risk. Characteristics of hosts themselves (e.g., body condition, host behavior, immune defenses) may affect the likelihood of parasitism. However, despite highly variable rates of parasitism and infection in wild populations, identifying widespread links between individual characteristics and heterogeneity in parasite acquisition has proven challenging because many zoonoses exist over wide geographic extents and exhibit both spatial and temporal heterogeneity in prevalence and individual and population‐level effects. Using seven years of data collected by the National Ecological Observatory Network (NEON), we examined relationships among individual host condition, behavior, and parasitism byIxodidticks in a keystone host species, the white‐footed mouse,Peromyscus leucopus. We found that individual condition, specifically sex, body mass, and reproductive condition, had both direct and indirect effects on parasitism by ticks, but the nature of these effects differed for parasitism by larval versus nymphal ticks. We also found that condition differences influenced rodent behavior, and behavior directly affected the rates of parasitism, with individual mice that moved farther being more likely to carry ticks. This study illustrates how individual‐level data can be examined using large‐scale datasets to draw inference and uncover broad patterns in host–parasite encounters at unprecedented spatial scales. Our results suggest that intraspecific variation in the movement ecology of hosts may affect host–parasite encounter rates and, ultimately, alter zoonotic disease risk through anthropogenic modifications and natural environmental conditions that alter host space use.
more »
« less
- Award ID(s):
- 2110031
- PAR ID:
- 10559462
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology
- Volume:
- 106
- Issue:
- 1
- ISSN:
- 0012-9658
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Understanding the community ecology of vector-borne and zoonotic diseases, and how it may shift transmission risk as it responds to environmental change, has become a central focus in disease ecology. Yet, it has been challenging to link the ecology of disease with reported human incidence. Here, we bridge the gap between local-scale community ecology and large-scale disease epidemiology, drawing from a priori knowledge of tick-pathogen-host ecology to model spatially-explicit Lyme disease (LD) risk, and human Lyme disease incidence (LDI) in California. We first use a species distribution modeling approach to model disease risk with variables capturing climate, vegetation, and ecology of key reservoir host species, and host species richness. We then use our modeled disease risk to predict human disease incidence at the zip code level across California. Our results suggest the ecology of key reservoir hosts—particularly dusky-footed woodrats—is central to disease risk posed by ticks, but that host community richness is not strongly associated with tick infection. Predicted disease risk, which is most strongly influenced by the ecology of dusky-footed woodrats, in turn is a strong predictor of human LDI. This relationship holds in the Wildland-Urban Interface, but not in open access public lands, and is stronger in northern California than in the state as a whole. This suggests peridomestic exposure to infected ticks may be more important to LD epidemiology in California than recreational exposure, and underlines the importance of the community ecology of LD in determining human transmission risk throughout this LD endemic region of far western North America. More targeted tick and pathogen surveillance, coupled with studies of human and tick behavior could improve understanding of key risk factors and inform public health interventions. Moreover, longitudinal surveillance data could further improve forecasts of disease risk in response to global environmental change.more » « less
-
Predators and parasites are critical, interconnected members of the community and have the potential to shape host populations. Predators, in particular, can have direct and indirect impacts on disease dynamics. By removing hosts and their parasites, predators alter both host and parasite populations and ultimately shape disease transmission. Selective predation of infected hosts has received considerable attention as it is recognized to have important ecological implications. The occurrence and consequences of preferential consumption of uninfected hosts, however, has rarely been considered. Here, we synthesize current evidence suggesting this strategy of selectively predating uninfected individuals is likely more common than previously anticipated and address how including this predation strategy can change our understanding of the ecology and evolution of disease dynamics. Selective predation strategies are expected to differentially impact ecological dynamics and therefore, consideration of both strategies is required to fully understand the impact of predation on prey and host densities. In addition, given that different strategies of prey selectivity by predators change the fitness payoffs both for hosts and their parasites, we predict amplified coevolutionary rates under selective predation of infected hosts compared to uninfected hosts. Using recent work highlighting the critical role that predators play in disease dynamics, we provide insights into the potential mechanisms by which selective predation on healthy individuals can directly affect ecological outcomes and impact long‐term host–parasite coevolution. We contrast the consequences of both scenarios of selective predation while identifying current gaps in the literature and future research directions.more » « less
-
Abstract Laboratory assays show that parasites often have lower heat tolerance than their hosts. But how physiological tolerances and behavioral responses of hosts and parasites combine to affect their ecological interactions in heterogeneous field environments is largely unknown. We addressed this challenge using the model insect system of the braconid wasp parasitoid,Cotesia congregata, and its caterpillar host,Manduca sexta. We used experimental manipulations of microclimate in the field to determine how elevated daytime temperatures altered the behavior, performance, and survival of host and parasite. Our experimental manipulation increased daily maximum temperatures on host plants, but had negligible effects on overall mean temperature. These increased maximum temperatures resulted in subtle, biologically relevant, changes in physiology and behavior of the host and parasitoid. We found that parasitism by the wasp did not significantly alter caterpillar thermoregulatory behavior, while experimentally increased daily maximum temperatures resulted in both parasitized and unparasitized caterpillars to be found more frequently in cooler microhabitats. Overall, we did not observe the complete parasitoid mortality seen at extreme temperatures in laboratory studies, but gained insight into the sublethal effects of increased daily maximum temperatures on host and parasitoid behavior and physiology. Climate change will alter both the biotic and abiotic environments that organisms face, and we show here that empirical experiments in the field are important for understanding organismal response to these new environments.more » « less
-
To make more informed predictions of host–pathogen interactions under climate change, studies have incorporated the thermal performance of host, vector and pathogen traits into disease models to quantify effects on average transmission rates. However, this body of work has omitted the fact that variation in susceptibility among individual hosts affects disease spread and long-term patterns of host population dynamics. Furthermore, and especially for ectothermic host species, variation in susceptibility is likely to be plastic, influenced by variables such as environmental temperature. For example, as host individuals respond idiosyncratically to temperature, this could affect the population-level variation in susceptibility, such that there may be predictable functional relationships between variation in susceptibility and temperature. Quantifying the relationship between temperature and among-host trait variation will therefore be critical for predicting how climate change and disease will interact to influence host–pathogen population dynamics. Here, we use a model to demonstrate how short-term effects of temperature on the distribution of host susceptibility can drive epidemic characteristics, fluctuations in host population sizes and probabilities of host extinction. Our results emphasize that more research is needed in disease ecology and climate biology to understand the mechanisms that shape individual trait variation, not just trait averages.more » « less
An official website of the United States government
