skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lense–Thirring precession after a supermassive black hole disrupts a star
Abstract An accretion disk formed around a supermassive black hole after it disrupts a star is expected to be initially misaligned with respect to the equatorial plane of the black hole. This misalignment induces relativistic torques (the Lense–Thirring effect) on the disk, causing the disk to precess at early times, whereas at late times the disk aligns with the black hole and precession terminates1,2. Here we report, using high-cadence X-ray monitoring observations of a tidal disruption event (TDE), the discovery of strong, quasi-periodic X-ray flux and temperature modulations. These X-ray modulations are separated by roughly 15 days and persist for about 130 days during the early phase of the TDE. Lense–Thirring precession of the accretion flow can produce this X-ray variability, but other physical mechanisms, such as the radiation-pressure instability3,4, cannot be ruled out. Assuming typical TDE parameters, that is, a solar-like star with the resulting disk extending at most to the so-called circularization radius, and that the disk precesses as a rigid body, we constrain the disrupting dimensionless spin parameter of the black hole to be 0.05 ≲ ∣a∣ ≲ 0.5.  more » « less
Award ID(s):
2006684
PAR ID:
10559506
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature
Date Published:
Journal Name:
Nature
Volume:
630
Issue:
8016
ISSN:
0028-0836
Page Range / eLocation ID:
325 to 328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the tidal disruption event (TDE) AT2022lri, hosted in a nearby (≈144 Mpc) quiescent galaxy with a low-mass massive black hole (104M<MBH< 106M). AT2022lri belongs to the TDE-H+He subtype. More than 1 Ms of X-ray data were collected with NICER, Swift, and XMM-Newton from 187 to 672 days after peak. The X-ray luminosity gradually declined from 1.5 × 1044erg s−1to 1.5 × 1043erg s−1and remains much above the UV and optical luminosity, consistent with a super-Eddington accretion flow viewed face-on. Sporadic strong X-ray dips atop a long-term decline are observed, with a variability timescale of ≈0.5 hr–1 days and amplitude of ≈2–8. When fitted with simple continuum models, the X-ray spectrum is dominated by a thermal disk component with inner temperature going from ∼146 to ∼86 eV. However, there are residual features that peak around 1 keV, which, in some cases, cannot be reproduced by a single broad emission line. We analyzed a subset of time-resolved spectra with two physically motivated models describing a scenario either where ionized absorbers contribute extra absorption and emission lines or where disk reflection plays an important role. Both models provide good and statistically comparable fits, show that the X-ray dips are correlated with drops in the inner disk temperature, and require the existence of subrelativistic (0.1–0.3c) ionized outflows. We propose that the disk temperature fluctuation stems from episodic drops of the mass accretion rate triggered by magnetic instabilities or/and wobbling of the inner accretion disk along the black hole’s spin axis. 
    more » « less
  2. Abstract Stars that interact with supermassive black holes (SMBHs) can be either completely or partially destroyed by tides. In a partial tidal disruption event (TDE), the high-density core of the star remains intact, and the low-density outer envelope of the star is stripped and feeds a luminous accretion episode. The TDE AT 2018fyk, with an inferred black hole mass of 107.7±0.4M, experienced an extreme dimming event at X-ray (factor of >6000) and UV (factor of ∼15) wavelengths ∼500–600 days after discovery. Here we report on the reemergence of these emission components roughly 1200 days after discovery. We find that the source properties are similar to those of the predimming accretion state, suggesting that the accretion flow was rejuvenated to a similar state. We propose that a repeated partial TDE, where the partially disrupted star is on an ∼1200 day orbit about the SMBH and periodically stripped of mass during each pericenter passage, powers its unique light curve. This scenario provides a plausible explanation for AT 2018fyk’s overall properties, including the rapid dimming event and the rebrightening at late times. We also provide testable predictions for the behavior of the accretion flow in the future; if the second encounter was also a partial disruption, then we predict another strong dimming event around day 1800 (2023 August) and a subsequent rebrightening around day 2400 (2025 March). This source provides strong evidence of the partial disruption of a star by an SMBH. 
    more » « less
  3. Abstract Supermassive black holes can experience super-Eddington peak mass fallback rates following the tidal disruption of a star. The theoretical expectation is that part of the infalling material is expelled by means of an accretion disk wind, whose observational signature includes blueshifted absorption lines of highly ionized species in X-ray spectra. To date, however, only one such ultrafast outflow (UFO) has been reported in the tidal disruption event (TDE) ASASSN–14li. Here we report on the discovery of a transient absorption-like signature in X-ray spectra of the TDE AT2020ksf/Gaia20cjk (at a redshift ofz= 0.092), following an X-ray brightening ∼230 days after UV/optical peak. We find that while no statistically significant absorption features are present initially, they appear on a timescale of several days and remain detected up to 770 days after peak. Simple thermal continuum models, combined with a power-law or neutral absorber, do not describe these features well. Adding a partial-covering, low-velocity ionized absorber improves the fit at early times but fails at late times. A high-velocity (vw∼ 42,000 km s−1), ionized absorber (UFO) provides a good fit to all data. The few-day timescale of variability is consistent with expectations for a clumpy wind. We discuss several scenarios that could explain the X-ray delay, as well as the potential for larger-scale wind feedback. The serendipitous nature of the discovery could suggest a high incidence of UFOs in TDEs, alleviating some of the tension with theoretical expectations. 
    more » « less
  4. Abstract We present a systematic analysis of the X-ray emission of a sample of 17 optically selected, X-ray-detected tidal disruption events (TDEs) discovered between 2014 and 2021. The X-ray light curves show a diverse range of temporal behaviors, with most sources not following the expected power-law decline. The X-ray spectra are mostly extremely soft and consistent with thermal emission from the innermost region of an accretion disk, which cools as the accretion rate decreases. Three sources show formation of a hard X-ray corona at late times. The spectral energy distribution shape, probed by the ratio (LBB/LX) between the UV/optical and X-ray, shows a wide range ofLBB/LX∈ (0.5, 3000) at early times and converges to disklike values ofLBB/LX∈ (0.5, 10) at late times. We estimate the fraction of optically discovered TDEs withLX≥ 1042erg s−1to be at least 40% and show that X-ray loudness is independent of black hole mass. We argue that distinct disk formation timescales are unlikely to be able to explain the diverse range of X-ray evolution. We combine our sample with X-ray-discovered ones to construct an X-ray luminosity function, best fit by a broken power law, with a break atLX≈ 1044erg s−1. We show that there is no dichotomy between optically and X-ray-selected TDEs; instead, there is a continuum of early-timeLBB/LX, at least as wide asLBB/LX∈ (0.1, 3000), with optical/X-ray surveys selecting preferentially, but not exclusively, from the higher/lower end of the distribution. Our findings are consistent with unification models for the overall TDE population. 
    more » « less
  5. Abstract The tidal disruption event (TDE) AT2022cmc represents the fourth known example of a relativistic jet produced by the tidal disruption of a stray star, providing a unique probe of the formation and evolution of relativistic jets in otherwise dormant supermassive black holes (SMBHs). Here we present deep, late-time Chandra observations of AT2022cmc extending totobs≈ 400 days after disruption. Our observations reveal a sudden decrease in the X-ray brightness by a factor of ≳14 over a factor of ≈2.3 in time, and a deviation from the earlier power-law decline with a steepeningα≳ 3.2 (FX∝t−α), steeper than expected for a jet break, and pointing to the cessation of jet activity attobs≈ 215 days. Such a transition has been observed in two previous TDEs (Swift J1644+57 and Swift J2058+05). From the X-ray luminosity and the timescale of jet shut-off, we parameterize the mass of the SMBH in terms of unknown jet efficiency and accreted mass fraction parameters. Motivated by the disk–jet connection in active galactic nuclei, we favor black hole masses ≲105M(where the jet and disk luminosities are comparable), and disfavor larger black holes (in which extremely powerful jets are required to outshine their accretion disks). We additionally estimate a total accreted mass of ≈0.1M. Applying the same formalism to Swift J1644+57 and Swift J2058+05, we favor comparable black hole masses for these TDEs of ≲ a few × 105M, and suggest that jetted TDEs may preferentially form from lower-mass black holes when compared to nonrelativistic events, owing to generally lower jet and higher disk efficiencies at higher black hole masses. 
    more » « less