Abstract Streptococcus agalactiaeor Group BStreptococcus(GBS) is a Gram‐positive bacterial pathobiont that is the etiological cause of severe perinatal infections. GBS can colonize the vagina of pregnant patients and invade tissues causing ascending infections of the gravid reproductive tract that lead to adverse outcomes including preterm birth, neonatal sepsis, and maternal or fetal demise. Additionally, transmission of GBS during labor or breastfeeding can also cause invasive infections of neonates and infants. However, human milk has also been shown to have protective effects against infection; a characteristic that is likely derived from antimicrobial and immunomodulatory properties of molecules that comprise human milk. Recent evidence suggests that human milk oligosaccharides (HMOs), short‐chain sugars that comprise 8–20 % of breast milk, have antimicrobial and anti‐biofilm activity against GBS and other bacterial pathogens. Additionally, HMOs have been shown to potentiate the activity of antibiotics against GBS. This review presents the most recent published work that studies the interaction between HMOs and GBS.
more »
« less
Structure‐Activity Relationships in Supramolecular Hosts Targeting Bacterial Phosphatidylethanolamine (PE) Lipids
Abstract The World Health Organization has described the antimicrobial resistance crisis as one of the top ten global public health threats. New antimicrobial agents that can fight infections caused by antimicrobial resistant pathogens are therefore needed. A potential strategy is the development of small molecules that can selectively interact with bacterial membranes (or membranes of other microbial pathogens), and thereby rapidly kill the bacteria. Here, we report the structure‐activity relationship within a group of 22 compounds that were designed to bind the bacterial lipid phosphatidylethanolamine (PE). Liposome‐based studies reveal that the lipophilicity of the compounds has the strongest effect on both the affinity and selectivity for PE. The best results were obtained for compounds with logP≈3.75, which showed a 5x–7x selectivity for bacterial PE lipids over human PC (phosphatidylcholine) lipids. Furthermore, these compounds also showed potent antibacterial activity against the Gram‐positive bacteriumB. cereus, with minimum inhibitory concentrations (MICs) below 10 μM, a concentration where they showed minimal hemolytic activity against human red blood cells. These results not only show the possibility of PE‐binding small molecules to function as antibiotics, but also provide guidelines for the development of compounds targeting other types of biologically relevant membrane lipids.
more »
« less
- Award ID(s):
- 2145383
- PAR ID:
- 10559513
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 30
- Issue:
- 69
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Group BStreptococcus(GBS) is an encapsulated Gram‐positive bacterial pathogen that causes severe perinatal infections. Human milk oligosaccharides (HMOs) are short‐chain sugars that have recently been shown to possess antimicrobial and anti‐biofilm activity against a variety of bacterial pathogens, including GBS. We have expanded these studies to demonstrate that HMOs can inhibit and dismantle biofilm in both invasive and colonizing strains of GBS. A cohort of 30 diverse strains of GBS were analyzed for susceptibility to HMO‐dependent biofilm inhibition or destruction. HMOs were significantly effective at inhibiting biofilm in capsular‐type‐ and sequence‐type‐specific fashion, with significant efficacy in CpsIb, CpsII, CpsIII, CpsV, and CpsVI strains as well as ST‐1, ST‐12, ST‐19, and ST‐23 strains. Interestingly, CpsIa as well as ST‐7 and ST‐17 were not susceptible to the anti‐biofilm activity of HMOs, underscoring the strain‐specific effects of these important antimicrobial molecules against the perinatal pathogenStreptococcus agalactiae.more » « less
-
Hughes, Kelly T (Ed.)ABSTRACT New approaches for combating microbial infections are needed. One strategy for disrupting pathogenesis involves developing compounds that interfere with bacterial virulence. A critical molecular determinant of virulence for Gram-negative bacteria are efflux pumps of the resistance-nodulation-division family, which includes AcrAB-TolC. We previously identified small molecules that bind AcrB, inhibit AcrAB-TolC, and do not appear to damage membranes. These efflux pump modulators (EPMs) were discovered in an in-cell screening platform called SAFIRE (Screen for Anti-infectives using Fluorescence microscopy of IntracellulaR Enterobacteriaceae). SAFIRE identifies compounds that disrupt the growth of a Gram-negative human pathogen,Salmonella entericaserotype Typhimurium (S. Typhimurium), in macrophages. We used medicinal chemistry to iteratively design ~200 EPM35 analogs and test them for activity in SAFIRE, generating compounds with nanomolar potency. Analogs were demonstrated to bind AcrB in a substrate binding pocket by cryo-electron microscopy. Despite having amphipathic structures, the EPM analogs do not disrupt membrane voltage, as monitored by FtsZ localization to the cell septum. The EPM analogs had little effect on bacterial growth in standard Mueller Hinton Broth. However, under broth conditions that mimic the micro-environment of the macrophage phagosome,acrABis required for growth, the EPM analogs are bacteriostatic, and the EPM analogs increase the potency of antibiotics. These data suggest that under macrophage-like conditions, the EPM analogs prevent the export of a toxic bacterial metabolite(s) through AcrAB-TolC. Thus, compounds that bind AcrB could disrupt infection by specifically interfering with the export of bacterial toxic metabolites, host defense factors, and/or antibiotics. IMPORTANCEBacterial efflux pumps are critical for resistance to antibiotics and for virulence. We previously identified small molecules that inhibit efflux pumps (efflux pump modulators, EPMs) and prevent pathogen replication in host cells. Here, we used medicinal chemistry to increase the activity of the EPMs against pathogens in cells into the nanomolar range. We show by cryo-electron microscopy that these EPMs bind an efflux pump subunit. In broth culture, the EPMs increase the potency (activity), but not the efficacy (maximum effect), of antibiotics. We also found that bacterial exposure to the EPMs appear to enable the accumulation of a toxic metabolite that would otherwise be exported by efflux pumps. Thus, inhibitors of bacterial efflux pumps could interfere with infection not only by potentiating antibiotics, but also by allowing toxic waste products to accumulate within bacteria, providing an explanation for why efflux pumps are needed for virulence in the absence of antibiotics.more » « less
-
Invasive fungal infections are increasing worldwide due to an expanding number of immunocompromised patients as well as an increase in drug-resistant fungi. While fungal resistance has increased, this resistance has not been accompanied by the development of new antifungals. A common class of antifungal agents that are prescribed are the azoles, which contain either a triazole or an imidazole group. Unfortunately, current azoles, like fluconazole, have been shown to be less effective with the increase in resistant fungal pathogens. Therefore, the development of novel azole antifungal compounds is of urgent need. The objective of this research was to synthesize triazole-containing small molecules with potent antifungal activity. The scaffold of the synthesized compounds contains a triazole moiety and was synthesized via a copper-catalyzed azide-alkyne click reaction (CuAAC) between the appropriate alkyne and azide intermediates. The minimum inhibitory concentrations of these compounds were determined using standard broth microdilution assays against opportunistic bacteria and fungi associated with life-threatening invasive fungal infections. Although the synthesized compounds possessed no antimicrobial activity, these results can be used to further the long-term goal of developing and optimizing lead compounds with potentin vitroantifungal activity.more » « less
-
Abstract Diosgenin, a hydrolyzed product of phytosteroid saponin, has widely been studied for its medicinal properties. In an effort to find bioactive molecules, 25 novel thiazole‐fused diosgenin molecules have been synthesized by an efficient reaction protocol. The chemistry involves the Oppenauer oxidation followed by double bond isomerization in a one‐pot reaction, epoxidation, and the reaction of urea derivatives with the epoxyketone to synthesize the target compounds. These novel chimeric compounds were tested for their potential antimicrobial and cytotoxic properties. Antimicrobial studies against a panel of Gram‐positive and Gram‐negative led to the discovery of some of these molecules as narrow‐spectrum antimicrobial agents againstBacillus subtilisbacteria. In preliminary cytotoxicity studies, 2‐fluorophenyl derivative (10) inhibited the growth of several cell lines of the NCI‐60 cell line panels including >93 % inhibition of UO‐31 cell line. Furthermore, the hit antibacterial compounds are non‐toxic to human cancer cell lines, and the cytotoxic compound is not active against the bacterial strains, showing the selective therapeutic potential of the chimeric compounds.more » « less
An official website of the United States government
