Abstract The field of plant genome sequencing has grown rapidly in the past 20 years, leading to increases in the quantity and quality of publicly available genomic resources. The growing wealth of genomic data from an increasingly diverse set of taxa provides unprecedented potential to better understand the genome biology and evolution of land plants. Here we provide a contemporary view of land plant genomics, including analyses on assembly quality, taxonomic distribution of sequenced species and national participation. We show that assembly quality has increased dramatically in recent years, that substantial taxonomic gaps exist and that the field has been dominated by affluent nations in the Global North and China, despite a wide geographic distribution of study species. We identify numerous disconnects between the native range of focal species and the national affiliation of the researchers studying them, which we argue are rooted in colonialism—both past and present. Luckily, falling sequencing costs, widening availability of analytical tools and an increasingly connected scientific community provide key opportunities to improve existing assemblies, fill sampling gaps and empower a more global plant genomics community. 
                        more » 
                        « less   
                    
                            
                            Pluripotency of a founding field: rebranding developmental biology
                        
                    
    
            ABSTRACT The field of developmental biology has declined in prominence in recent decades, with off-shoots from the field becoming more fashionable and highly funded. This has created inequity in discovery and opportunity, partly due to the perception that the field is antiquated or not cutting edge. A ‘think tank’ of scientists from multiple developmental biology-related disciplines came together to define specific challenges in the field that may have inhibited innovation, and to provide tangible solutions to some of the issues facing developmental biology. The community suggestions include a call to the community to help ‘rebrand’ the field, alongside proposals for additional funding apparatuses, frameworks for interdisciplinary innovative collaborations, pedagogical access, improved science communication, increased diversity and inclusion, and equity of resources to provide maximal impact to the community. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10559583
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Company of Biologists
- Date Published:
- Journal Name:
- Development
- Volume:
- 151
- Issue:
- 3
- ISSN:
- 0950-1991
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Although it is well appreciated that genetic studies of flowering time regulation have led to fundamental advances in the fields of molecular and developmental biology, the ways in which genetic studies of flowering time diversity have enriched the field of evolutionary biology have received less attention despite often being equally profound. Because flowering time is a complex, environmentally responsive trait that has critical impacts on plant fitness, crop yield, and reproductive isolation, research into the genetic architecture and molecular basis of its evolution continues to yield novel insights into our understanding of domestication, adaptation, and speciation. For instance, recent studies of flowering time variation have reconstructed how, when, and where polygenic evolution of phenotypic plasticity proceeded from standing variation andde novomutations; shown how antagonistic pleiotropy and temporally varying selection maintain polymorphisms in natural populations; and provided important case studies of how assortative mating can evolve and facilitate speciation with gene flow. In addition, functional studies have built detailed regulatory networks for this trait in diverse taxa, leading to new knowledge about how and why developmental pathways are rewired and elaborated through evolutionary time.more » « less
- 
            ABSTRACT Developmental biology seeks to unravel the intricate regulatory mechanisms orchestrating the transformation of a single cell into a complex, multicellular organism. Dynamical systems theory provides a powerful quantitative, visual and intuitive framework for understanding this complexity. This Primer examines five core dynamical systems theory concepts and their applications to pattern formation during development: (1) analysis of phase portraits, (2) bistable switches, (3) stochasticity, (4) response to time-dependent signals, and (5) oscillations. We explore how these concepts shed light onto cell fate decision making and provide insights into the dynamic nature of developmental processes driven by signals and gradients, as well as the role of noise in shaping developmental outcomes. Selected examples highlight how integrating dynamical systems with experimental approaches has significantly advanced our understanding of the regulatory logic underlying development across scales, from molecular networks to tissue-level dynamics.more » « less
- 
            Synopsis The modern field of biology has its roots in the curiosity and skill of amateur researchers and has never been purely the domain of professionals. Today, professionals and amateurs contribute to biology research, working both together and independently. Well-targeted and holistic investment in amateur biology research could bring a range of benefits that, in addition to positive societal benefits, may help to address the considerable challenges facing our planet in the 21st century. We highlight how recent advances in amateur biology have been facilitated by innovations in digital infrastructure as well as the development of community biology laboratories, launched over the last decade, and we provide recommendations for how individuals can support the integration of amateurs into biology research. The benefits of investment in amateur biology research could be many-fold, however, without a clear consideration of equity, efforts to promote amateur biology could exacerbate structural inequalities around access to and benefits from STEM. The future of the field of biology relies on integrating a diversity of perspectives and approaches—amateur biology researchers have an important role to play.more » « less
- 
            Abstract Single-cell and single-nucleus RNA-sequencing technologies capture the expression of plant genes at an unprecedented resolution. Therefore, these technologies are gaining traction in plant molecular and developmental biology for elucidating the transcriptional changes across cell types in a specific tissue or organ, upon treatments, in response to biotic and abiotic stresses, or between genotypes. Despite the rapidly accelerating use of these technologies, collective and standardized experimental and analytical procedures to support the acquisition of high-quality data sets are still missing. In this commentary, we discuss common challenges associated with the use of single-cell transcriptomics in plants and propose general guidelines to improve reproducibility, quality, comparability, and interpretation and to make the data readily available to the community in this fast-developing field of research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    