skip to main content


This content will become publicly available on September 5, 2025

Title: Detection of Cyberbullying in GIF using AI
Cyberbullying is a well-known social issue, and it is escalating day by day. Due to the vigorous development of the internet, social media provide many different ways for the user to express their opinions and exchange information. Cyberbullying occurs on social media using text messages, comments, sharing images and GIFs or stickers, and audio and video. Much research has been done to detect cyberbullying on textual data; some are available for images. Very few studies are available to detect cyberbullying on GIFs/stickers. We collect a GIF dataset from Twitter and Applied a deep learning model to detect cyberbullying from the dataset. Firstly, we extracted hashtags related to cyberbullying using Twitter. We used these hashtags to download GIF file using publicly available API GIPHY. We collected over 4100 GIFs including cyberbullying and non-cyberbullying. we applied deep learning pre-trained model VGG16 for the detection of the cyberbullying. The deep learning model achieved the accuracy of 97%. Our work provides the GIF dataset for researchers working in this area.  more » « less
Award ID(s):
2114936
PAR ID:
10559640
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the 2024 Intelligent Systems Conference (IntelliSys)
Date Published:
Subject(s) / Keyword(s):
cyberbullying online hate deep learning model AI GIF.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tweet hashtags have the potential to improve the search for information during disaster events. However, there is a large number of disaster-related tweets that do not have any user-provided hashtags. Moreover, only a small number of tweets that contain actionable hashtags are useful for disaster response. To facilitate progress on automatic identification (or extraction) of disaster hashtags for Twitter data, we construct a unique dataset of disaster-related tweets annotated with hashtags useful for filtering actionable information. Using this dataset, we further investigate Long Short-Term Memory-based models within a Multi-Task Learning framework. The best performing model achieves an F1-score as high as $92.22%$. The dataset, code, and other resources are available on Github.1 
    more » « less
  2. Cyberbullying has become one of the most pressing online risks for young people and has raised serious concerns in society. The emerging literature identifies cyberbullying as repetitive acts that occur over time rather than one-off incidents. Yet, there has been relatively little work to model the hierarchical structure of social media sessions and the temporal dynamics of cyberbullying in online social network sessions. We propose a hierarchical attention network for cyberbullying detection that takes these aspects of cyberbullying into account. The primary distinctive characteristics of our approach include: (i) a hierarchical structure that mirrors the structure of a social media session; (ii) levels of attention mechanisms applied at the word and comment level, thereby enabling the model to pay different amounts of attention to words and comments, depending on the context; and (iii) a cyberbullying detection task that also predicts the interval of time between two adjacent comments. These characteristics allow the model to exploit the commonalities and differences across these two tasks to improve the performance of cyberbullying detection. Experiments on a real-world dataset from Instagram, the social media platform on which the highest percentage of users have reported experiencing cyberbullying, reveal that the proposed architecture outperforms the state-of-the-art method. 
    more » « less
  3. Over the last decade, research has revealed the high prevalence of cyberbullying among youth and raised serious concerns in society. Information on the social media platforms where cyberbullying is most prevalent (e.g., Instagram, Facebook, Twitter) is inherently multi-modal, yet most existing work on cyberbullying identification has focused solely on building generic classification models that rely exclusively on text analysis of online social media sessions (e.g., posts). Despite their empirical success, these efforts ignore the multi-modal information manifested in social media data (e.g., image, video, user profile, time, and location), and thus fail to offer a comprehensive understanding of cyberbullying. Conventionally, when information from different modalities is presented together, it often reveals complementary insights about the application domain and facilitates better learning performance. In this paper, we study the novel problem of cyberbullying detection within a multi-modal context by exploiting social media data in a collaborative way. This task, however, is challenging due to the complex combination of both cross-modal correlations among various modalities and structural dependencies between different social media sessions, and the diverse attribute information of different modalities. To address these challenges, we propose XBully, a novel cyberbullying detection framework, that first reformulates multi-modal social media data as a heterogeneous network and then aims to learn node embedding representations upon it. Extensive experimental evaluations on real-world multi-modal social media datasets show that the XBully framework is superior to the state-of-the-art cyberbullying detection models. 
    more » « less
  4. As an intuitive way of expression emotion, the animated Graphical Interchange Format (GIF) images have been widely used on social media. Most previous studies on automated GIF emotion recognition fail to effectively utilize GIF’s unique properties, and this potentially limits the recognition performance. In this study, we demonstrate the importance of human related information in GIFs and conduct humancentered GIF emotion recognition with a proposed Keypoint Attended Visual Attention Network (KAVAN). The framework consists of a facial attention module and a hierarchical segment temporal module. The facial attention module exploits the strong relationship between GIF contents and human characters, and extracts frame-level visual feature with a focus on human faces. The Hierarchical Segment LSTM (HSLSTM) module is then proposed to better learn global GIF representations. Our proposed framework outperforms the state-of-the-art on the MIT GIFGIF dataset. Furthermore, the facial attention module provides reliable facial region mask predictions, which improves the model’s interpretability. 
    more » « less
  5. null (Ed.)
    Cyberbullying is rapidly becoming one of the most serious online risks for adolescents. This has motivated work on machine learning methods to automate the process of cyberbullying detection, which have so far mostly viewed cyberbullying as one-off incidents that occur at a single point in time. Comparatively less is known about how cyberbullying behavior occurs and evolves over time. This oversight highlights a crucial open challenge for cyberbullying-related research, given that cyberbullying is typically defined as intentional acts of aggression via electronic communication that occur repeatedly and persistently . In this article, we center our discussion on the challenge of modeling temporal patterns of cyberbullying behavior. Specifically, we investigate how temporal information within a social media session, which has an inherently hierarchical structure (e.g., words form a comment and comments form a session), can be leveraged to facilitate cyberbullying detection. Recent findings from interdisciplinary research suggest that the temporal characteristics of bullying sessions differ from those of non-bullying sessions and that the temporal information from users’ comments can improve cyberbullying detection. The proposed framework consists of three distinctive features: (1) a hierarchical structure that reflects how a social media session is formed in a bottom-up manner; (2) attention mechanisms applied at the word- and comment-level to differentiate the contributions of words and comments to the representation of a social media session; and (3) the incorporation of temporal features in modeling cyberbullying behavior at the comment-level. Quantitative and qualitative evaluations are conducted on a real-world dataset collected from Instagram, the social networking site with the highest percentage of users reporting cyberbullying experiences. Results from empirical evaluations show the significance of the proposed methods, which are tailored to capture temporal patterns of cyberbullying detection. 
    more » « less