skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Contrasting Electroencephalography-Derived Entropy and Neural Oscillations With Highly Skilled Meditators
Meditation is an umbrella term for a number of mental training practices designed to improve the monitoring and regulation of attention and emotion. Some forms of meditation are now being used for clinical intervention. To accompany the increased clinical interest in meditation, research investigating the neural basis of these practices is needed. A central hypothesis of contemplative neuroscience is that meditative states, which are unique on a phenomenological level, differ on a neurophysiological level. To identify the electrophysiological correlates of meditation practice, the electrical brain activity of highly skilled meditators engaging in one of six meditation styles (shamatha, vipassana, zazen, dzogchen, tonglen, and visualization) was recorded. A mind-wandering task served as a control. Lempel–Ziv complexity showed differences in nonlinear brain dynamics (entropy) during meditation compared with mind wandering, suggesting that meditation, regardless of practice, affects neural complexity. In contrast, there were no differences in power spectra at six different frequency bands, likely due to the fact that participants engaged in different meditation practices. Finally, exploratory analyses suggest neurological differences among meditation practices. These findings highlight the importance of studying the electroencephalography (EEG) correlates of different meditative practices.  more » « less
Award ID(s):
1704366
PAR ID:
10559700
Author(s) / Creator(s):
; ;
Publisher / Repository:
Frontiers Journals
Date Published:
Journal Name:
Frontiers in Human Neuroscience
Volume:
15
ISSN:
1662-5161
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automatic detection of an individual’s mind-wandering state has implications for designing and evaluating engaging and effective learning interfaces. While it is difficult to differentiate whether an individual is mind-wandering or focusing on the task only based on externally observable behavior, brain-based sensing offers unique insights to internal states. To explore the feasibility, we conducted a study using functional near-infrared spectroscopy (fNIRS) and investigated machine learning classifiers to detect mind-wandering episodes based on fNIRS data, both on an individual level and a group level, specifically focusing on automated window selection to improve classification results. For individual-level classification, by using a moving window method combined with a linear discriminant classifier, we found the best windows for classification and achieved a mean F1-score of 74.8%. For group-level classification, we proposed an individual-based time window selection (ITWS) algorithm to incorporate individual differences in window selection. The algorithm first finds the best window for each individual by using embedded individual-level classifiers and then uses these windows from all participants to build the final classifier. The performance of the ITWS algorithm is evaluated when used with eXtreme gradient boosting, convolutional neural networks, and deep neural networks. Our results show that the proposed algorithm achieved significant improvement compared to the previous state of the art in terms of brain-based classification of mind-wandering, with an average F1-score of 73.2%. This builds a foundation for mind-wandering detection for both the evaluation of multimodal learning interfaces and for future attention-aware systems. 
    more » « less
  2. Abstract Meditation practices have been claimed to have a positive effect on the regulation of mood and emotions for quite some time by practitioners, and in recent times there has been a sustained effort to provide a more precise description of the influence of meditation on the human brain. Longitudinal studies have reported morphological changes in cortical thickness and volume in selected brain regions due to meditation practice, which is interpreted as an evidence its effectiveness beyond the subjective self reporting. Using magnetoencephalography (MEG) or electroencephalography to quantify the changes in brain activity during meditation practice represents a challenge, as no clear hypothesis about the spatial or temporal pattern of such changes is available to date. In this article we consider MEG data collected during meditation sessions of experienced Buddhist monks practicing focused attention (Samatha) and open monitoring (Vipassana) meditation, contrasted by resting state with eyes closed. The MEG data are first mapped to time series of brain activity averaged over brain regions corresponding to a standard Destrieux brain atlas. Next, by bootstrapping and spectral analysis, the data are mapped to matrices representing random samples of power spectral densities in$$\alpha$$ α ,$$\beta$$ β ,$$\gamma$$ γ , and$$\theta$$ θ frequency bands. We use linear discriminant analysis to demonstrate that the samples corresponding to different meditative or resting states contain enough fingerprints of the brain state to allow a separation between different states, and we identify the brain regions that appear to contribute to the separation. Our findings suggest that the cingulate cortex, insular cortex and some of the internal structures, most notably the accumbens, the caudate and the putamen nuclei, the thalamus and the amygdalae stand out as separating regions, which seems to correlate well with earlier findings based on longitudinal studies. 
    more » « less
  3. null (Ed.)
    The effectiveness of user interfaces are limited by the tendency for the human mind to wander. Intelligent user interfaces can combat this by detecting when mind wandering occurs and attempting to regain user attention through a variety of intervention strategies. However, collecting data to build mind wandering detection models can be expensive, especially considering the variety of media available and potential differences in mind wandering across them. We explored the possibility of using eye gaze to build cross-domain models of mind wandering where models trained on data from users in one domain are used for different users in another domain. We built supervised classification models using a dataset of 132 users whose mind wandering reports were collected in response to thought-probes while they completed tasks from seven different domains for six minutes each (five domains are investigated here: Illustrated Text, Narrative Film, Video Lecture, Naturalistic Scene, and Reading Text). We used global eye gaze features to build within- and cross- domain models using 5-fold user-independent cross validation. The best performing within-domain models yielded AUROCs ranging from .57 to .72, which were comparable for the cross-domain models (AUROCs of .56 to .68). Models built from coarse-grained locality features capturing the spatial distribution of gaze resulted in slightly better transfer on average (transfer ratios of .61 vs .54 for global models) due to improved performance in certain domains. Instance-based and feature-level domain adaptation did not result in any improvements in transfer. We found that seven gaze features likely contributed to transfer as they were among the top ten features for at least four domains. Our results indicate that gaze features are suitable for domain adaptation from similar domains, but more research is needed to improve domain adaptation between more dissimilar domains. 
    more » « less
  4. Undergraduates’ distress has increased dramatically since the COVID-19 pandemic’s onset, raising concerns for academic achievement. Yet little is known about the mechanisms by which pandemic-related distress may affect students’ learning and performance, and consequently, how we might intervene to promote student achievement despite the continuing crisis. Across two studies with nearly 700 undergraduates, we highlight the mediating role of distraction: undergraduates higher in COVID-19 distress saw lower learning gains from an asynchronous neuroscience lesson due to increased mind wandering during the lesson. We replicate and extend this finding in Study 2: probing what pandemic-related stressors worried students and revealing systematic differences among students of marginalized identities, with largest impacts on first-generation, Latinx women. We also examined whether stress reappraisal or mindfulness practices may mitigate the observed distress-to-distraction pathway. Only mindfulness reduced mind wandering, though this did not translate to learning. We conclude with implications for practice and future research. 
    more » « less
  5. Abstract Student’s shift of attention away from a current learning task to task-unrelated thought, also called mind wandering, occurs about 30% of the time spent on education-related activities. Its frequent occurrence has a negative effect on learning outcomes across learning tasks. Automated detection of mind wandering might offer an opportunity to assess the attentional state continuously and non-intrusively over time and hence enable large-scale research on learning materials and responding to inattention with targeted interventions. To achieve this, an accessible detection approach that performs well for various systems and settings is required. In this work, we explore a new, generalizable approach to video-based mind wandering detection that can be transferred to naturalistic settings across learning tasks. Therefore, we leverage two datasets, consisting of facial videos during reading in the lab (N = 135) and lecture viewing in-the-wild (N = 15). When predicting mind wandering, deep neural networks (DNN) and long short-term memory networks (LSTMs) achieve F$$_{1}$$ 1 scores of 0.44 (AUC-PR = 0.40) and 0.459 (AUC-PR = 0.39), above chance level, with latent features based on transfer-learning on the lab data. When exploring generalizability by training on the lab dataset and predicting on the in-the-wild dataset, BiLSTMs on latent features perform comparably to the state-of-the-art with an F$$_{1}$$ 1 score of 0.352 (AUC-PR = 0.26). Moreover, we investigate the fairness of predictive models across gender and show based on post-hoc explainability methods that employed latent features mainly encode information on eye and mouth areas. We discuss the benefits of generalizability and possible applications. 
    more » « less