There has been longstanding controversy about whether the influence of lateral variations in core-mantle boundary heat flow can be detected in paleomagnetic records of geomagnetic field behavior. Their signature is commonly sought in globally distributed records of virtual geomagnetic pole (VGP) paths that have been claimed to exhibit specific longitudinal preferences during polarity transitions and excursions. These preferences have often been linked to thermal effects from large low seismic velocity areas (LLVPs) in the lowermost mantle, but the results have been contested because of potential sensitivity to sparse temporal and spatial sampling. Recently developed time varying global paleofield models spanning various time intervals in 1–100 ka, three of which include excursions, allow us to complement assessments of spatial distributions of transitional VGP paths with distributions of minimum field intensity. Robustness of the results is evaluated using similar products from four distinct numerical dynamo simulations with and without variable thermal boundary conditions and including stable geomagnetic polarity, excursions and reversals. We determine that VGP distributions are less useful than minimum field intensity in linking the influences of thermal CMB structure to geographical variations in actual paleofield observables, because VGP correlations depend strongly on good spatial sampling of a sufficient number of relatively rare events. These results provide a basis for evaluating comparable observations from four paleofield models. The distribution of VGP locations provide unreliable results given the restricted time span and available data locations. Rough correlations of global distributions of minimum intensity with areas outside the LLVPs give some indications of mantle control during excursions, although the results for the eastern hemisphere are complex, perhaps highlighting uncertainties about the hemispheric balance between thermal and compositional variations in the lowermost mantle. However, access to other geomagnetic properties (such as intensity and radial field at the CMB) provides a strong argument for using extended and improved global paleofield models to resolve the question of mantle influence on the geodynamo from the observational side.
more »
« less
Weather at the core: defining and categorizing geomagnetic excursions and reversals
SUMMARY Paleomagnetic records provide us with information about the extreme geomagnetic events known as excursions and reversals, but the sparsity of available data limits detailed knowledge of the process and timing. To date there are no agreed on criteria for categorizing such events in terms of severity or longevity. In an analogy to categorizing storms in weather systems, we invoke the magnitude of the global (modified) paleosecular variation index $$P_{i_D}$$ to define the severity of the magnetic field state, ranging in level from 0 to 3, and defined by instantaneous values of $$P_{i_D}$$ with level 0 being normal ($$P_{i_D}\lt 0.5$$) to extreme ($$P_{i_D}\ge 15$$). We denote the time of entry to an excursional (or reversal) event by when $$P_{i_D}$$ first exceeds 0.5, and evaluate its duration by the time at which $$P_{i_D}$$ first returns below its median value, termed the end of event threshold. We categorize each excursional event according to the peak level of $$P_{i_D}$$ during the entire event, with a range from Category-1 (Cat-1) to Cat-3. We explore an extended numerical dynamo simulation containing more than 1200 events and find that Cat-1 events are the most frequent (72 per cent), but only rarely lead to actual field reversals where the axial dipole, $$g_1^0$$, has reversed sign at the end of the event. Cat-2 account for about 20 per cent of events, with 34 per cent of those leading to actual reversals, while Cat-3 events arise about 8 per cent of the time but are more likely to produce reversals (43 per cent). Higher category events take as much as 10 times longer than Cat-1 events. Two paleomagnetic field models separately cover the Laschamp excursion and Matuyama–Brunhes (M-B) reversal which are Cat-2 events with respective durations of 3.6 and 27.4 kyr. It seems likely that Cat-2 may be an underestimate for M-B due to limitations in the paleomagnetic records. Our overall results suggest no distinction between excursions and reversals other than a reversal having the ending polarity state opposite to that at the start.
more »
« less
- Award ID(s):
- 2246758
- PAR ID:
- 10560083
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 240
- Issue:
- 1
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 747-762
- Size(s):
- p. 747-762
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Leucite Hills Volcanic Field, southwest Wyoming comprises two dozen volcanic features including necks, flows, dikes, and plugs. It has been the focus of many petrologic studies as its volcanic and shallow intrusive rocks are one of the only surficial manifestations of ultrapotassic lamproite. We build on paleomagnetic findings of Sheriff and Shive (1980) by providing further paleomagnetic data from the Boars Tusk dike and Black Rock flows. We also characterize the magnetic mineral assemblage of these lamproites. Principal component analysis of alternating field (AF) and thermal demagnetization data indicate that the dike and breccias of Boars Tusk record a reversed magnetic polarity and the Black Rock lava records a normal polarity, both consistent with previous findings. This recording is typically carried by minerals with coercivities >15 mT and susceptibility measurements indicate magnetite, maghemite, and titanomagnetite as likely magnetic carriers. AF and thermal demagnetization experiments evince secondary magnetizations held by lower coercivity grains, likely caused by lightning strikes. 40Ar/39Ar incremental heating experiments from Boars Tusk and Black Rock give plateau ages of ∼ 2500 ka and ∼ 900 ka, respectively. Recent advances in the chronology of geomagnetic field reversals and excursions during the Quaternary permit integration of the Boars Tusk dike into the lower Matuyama chron, whereas the Black Rock lavas most probably record the Kamikatsura excursion. Notably, Black Rock records high inclinations that suggest the short-lived excursion achieved a full geomagnetic reversal, something not observed at other localities recording the Kamikatsura excursion. The Leucite Hills offer further opportunities to refine the Quaternary geomagnetic instability time scale (GITS), and to improve understanding of the eruptive and geomorphic evolution of this unusual volcanism.more » « less
-
SUMMARY It is well known that the axial dipole part of Earth’s magnetic field reverses polarity, so that the magnetic North Pole becomes the South Pole and vice versa. The timing of reversals is well documented for the past 160 Myr, but the conditions that lead to a reversal are still not well understood. It is not known if there are reliable ‘precursors’ of reversals (events that indicate that a reversal is upcoming) or what they might be. We investigate if machine learning (ML) techniques can reliably identify precursors of reversals based on time-series of the axial magnetic dipole field. The basic idea is to train a classifier using segments of time-series of the axial magnetic dipole. This training step requires modification of standard ML techniques to account for the fact that we are interested in rare events—a reversal is unusual, while a non-reversing field is the norm. Without our tweak, the ML classifiers lead to useless predictions. Perhaps even more importantly, the usable observational record is limited to 0–2 Ma and contains only five reversals, necessitating that we determine if the data are even sufficient to reliably train and validate an ML algorithm. To answer these questions we use several ML classifiers (linear/non-linear support vector machines and long short-term memory networks), invoke a hierarchy of numerical models (from simplified models to 3-D geodynamo simulations), and two palaeomagnetic reconstructions (PADM2M and Sint-2000). The performance of the ML classifiers varies across the models and the observational record and we provide evidence that this is not an artefact of the numerics, but rather reflects how ‘predictable’ a model or observational record is. Studying models of Earth’s magnetic field via ML classifiers thus can help with identifying shortcomings or advantages of the various models. For Earth’s magnetic field, we conclude that the ability of ML to identify precursors of reversals is limited, largely due to the small amount and low frequency resolution of data, which makes training and subsequent validation nearly impossible. Put simply: the ML techniques we tried are not currently capable of reliably identifying an axial dipole moment (ADM) precursor for geomagnetic reversals. This does not necessarily imply that such a precursor does not exist, and improvements in temporal resolution and length of ADM records may well offer better prospects in the future.more » « less
-
ABSTRACT We study stellar-halo formation using six Milky-Way-mass galaxies in FIRE-2 cosmological zoom simulations. We find that $$5{-}40{{\ \rm per\ cent}}$$ of the outer (50–300 kpc) stellar halo in each system consists of in-situ stars that were born in outflows from the main galaxy. Outflow stars originate from gas accelerated by superbubble winds, which can be compressed, cool, and form co-moving stars. The majority of these stars remain bound to the halo and fall back with orbital properties similar to the rest of the stellar halo at z = 0. In the outer halo, outflow stars are more spatially homogeneous, metal-rich, and alpha-element-enhanced than the accreted stellar halo. At the solar location, up to $$\sim \!10 {{\ \rm per\ cent}}$$ of our kinematically identified halo stars were born in outflows; the fraction rises to as high as $$\sim \!40{{\ \rm per\ cent}}$$ for the most metal-rich local halo stars ([Fe/H] >−0.5). Such stars can be retrograde and create features similar to the recently discovered Milky Way ‘Splash’ in phase space. We conclude that the Milky Way stellar halo could contain local counterparts to stars that are observed to form in molecular outflows in distant galaxies. Searches for such a population may provide a new, near-field approach to constraining feedback and outflow physics. A stellar halo contribution from outflows is a phase-reversal of the classic halo formation scenario of Eggen, Lynden-Bell & Sandange, who suggested that halo stars formed in rapidly infalling gas clouds. Stellar outflows may be observable in direct imaging of external galaxies and could provide a source for metal-rich, extreme-velocity stars in the Milky Way.more » « less
-
Abstract Two-particle Azimuthal correlations are measured with the ALICE apparatus in pp collisions at $$\sqrt{s} = 13$$ s = 13 TeV to explore strangeness- and multiplicity-related effects in the fragmentation of jets and the transition regime between bulk and hard production, probed with the condition that a strange meson ( $$\mathrm {K_S}^{0}$$ K S 0 ) or baryon ( $$\Lambda $$ Λ ) with transverse momentum $$p_{\mathrm T} >3$$ p T > 3 GeV/ $$c$$ c is produced. Azimuthal correlations between kaons or $$\Lambda $$ Λ hyperons with other hadrons are presented at midrapidity for a broad range of the trigger ( $$3< p_\mathrm {T}^\mathrm {trigg} < 20$$ 3 < p T trigg < 20 GeV/ $$c$$ c ) and associated particle $$p_{\mathrm T}$$ p T (1 GeV/ $$c$$ c $$< p_\mathrm {T}^\mathrm {assoc} < p_\mathrm {T}^\mathrm {trigg} $$ < p T assoc < p T trigg ), for minimum-bias events and as a function of the event multiplicity. The near- and away-side peak yields are compared for the case of either $$\mathrm {K_S}^{0}$$ K S 0 or $$\Lambda $$ Λ ( $${\overline{\Lambda }}$$ Λ ¯ ) being the trigger particle with that of inclusive hadrons (a sample dominated by pions). In addition, the measurements are compared with predictions from PYTHIA 8 and EPOS LHC event generators.more » « less
An official website of the United States government
