skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Partial trajectory method to align and validate successive video cameras for vehicle tracking
This paper develops the partial trajectory method to align the views from successive fixed cameras that are used for video-based vehicle tracking across multiple camera views. The method is envisioned to serve as a validation tool of whatever alignment has already been performed between the cameras to ensure high fidelity with the actual vehicle movements as they cross the boundaries between cameras. The strength of the method is that it operates on the output of vehicle tracking in each camera rather than secondary features visible in the camera view that are unrelated to the traffic dynamics (e.g., fixed fiducial points). Thereby providing a direct feedback path from the tracking to ensure the quality of the alignment in the context of the traffic dynamics. The method uses vehicle trajectories within successive camera views along a freeway to deduce the presence of an overlap or a gap between those cameras and quantify how large the overlap or gap is. The partial trajectory method can also detect scale factor errors between successive cameras. If any error is detected, ideally one would redo the original camera alignment, if that is not possible, one could use the calculations from the algorithm to post hoc address the existing alignment. This research manually re-extracted the individual vehicle trajectories within each of the seven camera views from the NGSIM I-80 dataset. These trajectories are simply an input to the algorithm. The resulting method transcends the dataset and should be applicable to most methods that seek to extract vehicle trajectories across successive cameras. That said, the results reveal fundamental errors in the NGSIM dataset, including unaccounted for overlap at the boundaries between successive cameras, which leads to systematic speed and acceleration errors at the six camera interfaces. This method also found scale factor errors in the original NGSIM homographies. In response to these findings, we identified a new aerial photo of the NGSIM site and generated new homographies. To evaluate the impact of the partial trajectory method on the actual trajectory data, the manually re-extracted data were projected into the new coordinate system and smoothed. The re-extracted data shows much greater fidelity to the actual vehicle motion. The re-extracted data also tracks the vehicles over a 14% longer distance and adds 23% more vehicles compared to the original NGSIM dataset. As of publication, the re-extracted data from this paper will be released to the research community.  more » « less
Award ID(s):
2023857
PAR ID:
10560106
Author(s) / Creator(s):
;
Publisher / Repository:
https://www.sciencedirect.com/science/article/pii/S0968090X23004060
Date Published:
Journal Name:
Transportation Research Part C: Emerging Technologies
Volume:
158
Issue:
C
ISSN:
0968-090X
Page Range / eLocation ID:
104416
Subject(s) / Keyword(s):
Machine Vision Video Image Processing Traffic Flow Theory Highway Traffic NGSIM Empirical Data Congested Traffic
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Travel-time estimation of traffic flow is an important problem with critical implications for traffic congestion analysis. We developed techniques for using intersection videos to identify vehicle trajectories across multiple cameras and analyze corridor travel time. Our approach consists of (1) multi-object single-camera tracking, (2) vehicle re-identification among different cameras, (3) multi-object multi-camera tracking, and (4) travel-time estimation. We evaluated the proposed framework on real intersections in Florida with pan and fisheye cameras. The experimental results demonstrate the viability and effectiveness of our method. 
    more » « less
  2. Traffic energy consumption estimation is significant for the sustainable transportation. However, it is difficult to directly employ macro traffic flow data to accurately estimate the traffic energy consumption due to many traffic energy consumption models need second-by-second vehicle trajectory. To solve this problem, this paper proposes a traffic energy consumption model based on the macro-micro data, which the macro data derived from the fixed-location sensors and sparse micro data derived from the Connected and Automated Vehicles (CAVs). The completed vehicle trajectories are constructed by the nonparametric kernel smoothing algorithm and variational theory. To test the performance of the proposed method, the Next Generation Simulation micro (NGSIM) dataset and Caltrans Performance Measurement System macro dataset obtained from the same road and time are used. The results indicate that the proposed method not only can reflect the characteristics of traffic kinematic waves caused by traffic congestion, but also minimize the errors generated by the macro-micro transformation. In addition, it can significantly improve the accuracy of energy consumption estimation. 
    more » « less
  3. Identifying vehicles across cameras in traffic surveillance is fundamentally important for public safety purposes. However, despite some preliminary work, the rapid vehicle search in large-scale datasets has not been investigated. Moreover, modelling a view-invariant similarity between vehicle images from different views is still highly challenging. To address the problems, in this paper, we propose a Ranked Semantic Sampling (RSS) guided binary embedding method for fast cross-view vehicle Re-IDentification (Re-ID). The search can be conducted by efficiently computing similarities in the projected space. Unlike previous methods using random sampling, we design tree-structured attributes to guide the mini-batch sampling. The ranked pairs of hard samples in the mini-batch can improve the convergence of optimization. By minimizing a novel ranked semantic distance loss defined according to the structure, the learned Hamming distance is view-invariant, which enables cross-view Re-ID. The experimental results demonstrate that RSS outperforms the state-of-the-art approaches and the learned embedding from one dataset can be transferred to achieve the task of vehicle Re-ID on another dataset. 
    more » « less
  4. Traffic shockwaves demonstrate the formation and spreading of traffic fluctuation on roads. Existing methods mainly detect the shockwaves and their propagation by estimating traffic density and flow, which presents weaknesses in applications when traffic data is only partially or locally collected. This paper proposed a four-step data-driven approach that integrates machine learning with the traffic features to detect shockwaves and estimate their propagation speeds only using partial vehicle trajectory data. Specifically, we first denoise the speed data derived from trajectory data by the Fast Fourier Transform (FFT) to mitigate the effect of spontaneous random speed fluctuation. Next, we identify trajectory curves’ turning points where a vehicle runs into a shockwave and its speed presents a high standard deviation within a short interval. Furthermore, the Density-based Spatial Clustering of Applications with Noise algorithm (DBSCAN) combined with traffic flow features is adopted to split the turning points into different clusters, each corresponding to a shockwave with constant speed. Last, the one-norm distance regression method is used to estimate the propagation speed of detected shockwaves. The proposed framework was applied to the field data collected from the I-80 and US-101 freeway by the Next Generation Simulation (NGSIM) program. The results show that this four-step data-driven method could efficiently detect the shockwaves and their propagation speeds without estimating the traffic densities and flows nearby. It performs well for both homogenous and nonhomogeneous road segments with trajectory data collected from total or partial traffic flow. 
    more » « less
  5. Connected and automated vehicles (CAVs) extend urban traffic control from temporal to spatiotemporal by enabling the control of CAV trajectories. Most of the existing studies on CAV trajectory planning only consider longitudinal behaviors (i.e., in-lane driving), or assume that the lane changing can be done instantaneously. The resultant CAV trajectories are not realistic and cannot be executed at the vehicle level. The aim of this paper is to propose a full trajectory planning model that considers both in-lane driving and lane changing maneuvers. The trajectory generation problem is modeled as an optimization problem and the cost function considers multiple driving features including safety, efficiency, and comfort. Ten features are selected in the cost function to capture both in-lane driving and lane changing behaviors. One major challenge in generating a trajectory that reflects certain driving policies is to balance the weights of different features in the cost function. To address this challenge, it is proposed to optimize the weights of the cost function by imitation learning. Maximum entropy inverse reinforcement learning is applied to obtain the optimal weight for each feature and then CAV trajectories are generated with the learned weights. Experiments using the Next Generation Simulation (NGSIM) dataset show that the generated trajectory is very close to the original trajectory with regard to the Euclidean distance displacement, with a mean average error of less than 1 m. Meanwhile, the generated trajectories can maintain safety gaps with surrounding vehicles and have comparable fuel consumption. 
    more » « less