The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root by long-distance signaling to and from the shoot and root. Central to AON signaling in the shoots ofMedicago truncatulais SUNN, a leucine-rich repeat receptor-like kinase with high sequence similarity with CLAVATA1 (CLV1), part of a class of receptors inArabidopsisinvolved in regulating stem cell populations in the root and shoot. This class of receptors inArabidopsisincludes the BARELY ANY MERISTEM family, which, like CLV1, binds to CLE peptides and interacts with CLV1 to regulate meristem development.M. truncatulacontains five members of theBAMfamily, but onlyMtBAM1andMtBAM2are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individualMtBAMs, and several doubleBAMmutant combinations all displayed wild-type nodule number phenotypes. However,Mtbam2suppressed thesunn-5hypernodulation phenotype and partially rescued the short root length phenotype ofsunn-5 when present in asunn-5background. Grafting determined thatbam2suppresses supernodulation from the roots, regardless of theSUNNstatus of the root. Overexpression ofMtBAM2in wild-type plants increases nodule numbers, while overexpression ofMtBAM2in somesunnmutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutantrdn1-2orcrn. Relative expression measurements of the nodule transcription factor MtWOX5 downstream of the putativebam2 sunn-5complex revealed disruption of meristem signaling; while bothbam2andbam2 sunn-5influenceMtWOX5expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis inM. truncatula.
more »
« less
The rise of CLAVATA: evidence for CLAVATA3 and WOX signaling in the fern gametophyte
SUMMARY CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides are 12–13 amino acid‐long peptides that serve as positional signals in plants. The core CLE signaling module consists of a CLE peptide and a leucine‐rich repeat receptor‐like kinase, but in flowering plants, WUSCHEL‐RELATED HOMEOBOX (WOX) transcription factors are also incorporated to form negative feedback loops that regulate stem cell maintenance in the shoot and root. It is not known whenWOXgenes were co‐opted into CLE signaling pathways, only that mosses and liverworts do not require WOX for CLE‐regulated stem cell activities. We identified 11 CLE‐encoding genes in the Ceratopteris genome, including one (CrCLV3) most similar to shoot meristem CLE peptide CLAVATA3. We performed the first functional characterization of a fern CLE using techniques including RNAi knockdown and synthetic peptide dosage. We found that CrCLV3 promotes cell proliferation and stem cell identity in the gametophyte meristem. Importantly, we provide evidence for CrCLV3 regulation of theWOXgeneCrWOXAduring the developmental stage when female gametangium formation begins. These discoveries open a new avenue for CLE peptide research in the fern and clarify the evolutionary timeline of CLE‐WOX signaling in land plants.
more »
« less
- Award ID(s):
- 2423834
- PAR ID:
- 10560110
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- The Plant Journal
- Volume:
- 121
- Issue:
- 2
- ISSN:
- 0960-7412
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT The shoot apical meristem (SAM) gives rise to the aboveground organs of plants. The size of the SAM is relatively constant due to the balance between stem cell replenishment and cell recruitment into new organs. In angiosperms, the transcription factor WUSCHEL (WUS) promotes stem cell proliferation in the central zone of the SAM. WUS forms a negative feedback loop with a signaling pathway activated by CLAVATA3 (CLV3). In the periphery of the SAM, the ERECTA family receptors (ERfs) constrain WUS and CLV3 expression. Here, we show that four ligands of ERfs redundantly inhibit the expression of these two genes. Transcriptome analysis confirmed that WUS and CLV3 are the main targets of ERf signaling and uncovered new ones. Analysis of promoter reporters indicated that the WUS expression domain mostly overlaps with the CLV3 domain and does not shift along the apical-basal axis in clv3 mutants. Our three-dimensional mathematical model captured gene expression distributions at the single-cell level under various perturbed conditions. Based on our findings, CLV3 regulates cellular levels of WUS mostly through autocrine signaling, and ERfs regulate the spatial expression of WUS, preventing its encroachment into the peripheral zone.more » « less
-
SUMMARY Stem cells in plant shoots are a rare population of cells that produce leaves, fruits and seeds, vital sources for food and bioethanol. Uncovering regulators expressed in these stem cells will inform crop engineering to boost productivity. Single-cell analysis is a powerful tool for identifying regulators expressed in specific groups of cells. However, accessing plant shoot stem cells is challenging. Recent single-cell analyses of plant shoots have not captured these cells, and failed to detect stem cell regulators likeCLAVATA3andWUSCHEL. In this study, we finely dissected stem cell-enriched shoot tissues from both maize and arabidopsis for single-cell RNA-seq profiling. We optimized protocols to efficiently recover thousands ofCLAVATA3andWUSCHELexpressed cells. A cross-species comparison identified conserved stem cell regulators between maize and arabidopsis. We also performed single-cell RNA-seq on maize stem cell overproliferation mutants to find additional candidate regulators. Expression of candidate stem cell genes was validated using spatial transcriptomics, and we functionally confirmed roles in shoot development. These candidates include a family of ribosome-associated RNA-binding proteins, and two families of sugar kinase genes related to hypoxia signaling and cytokinin hormone homeostasis. These large-scale single-cell profiling of stem cells provide a resource for mining stem cell regulators, which show significant association with yield traits. Overall, our discoveries advance the understanding of shoot development and open avenues for manipulating diverse crops to enhance food and energy security.more » « less
-
Abstract Regulation of the homeodomain transcription factor WUSCHEL concentration is critical for stem cell homeostasis inArabidopsisshoot apical meristems. WUSCHEL regulates the transcription ofCLAVATA3through a concentration-dependent activation-repression switch.CLAVATA3, a secreted peptide, activates receptor kinase signaling to repressWUSCHELtranscription. Considering the revised regulation,CLAVATA3mediated repression ofWUSCHELtranscription alone will lead to an unstable system. Here we show thatCLAVATA3signaling regulates nuclear-cytoplasmic partitioning ofWUSCHELto control nuclear levels and its diffusion into adjacent cells. Our work also reveals that WUSCHEL directly interacts with EXPORTINS via EAR-like domain which is also required for destabilizing WUSCHEL in the cytoplasm. We develop a combined experimental and computational modeling approach that integratesCLAVATA3-mediated transcriptional repression ofWUSCHELand post-translational control of nuclear levels with the WUSCHEL concentration-dependent regulation ofCLAVATA3. We show that the dual control by the same signal forms a seamless connection between de novo WUSCHEL synthesis and sub-cellular partitioning in providing robustness to the WUSCHEL gradient.more » « less
-
Abstract In plants, the stem cells that form the shoot system reside within the shoot apical meristem (SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox protein and CLAVATA (CLV) peptides and receptors. WUS–CLV feedback signaling can be modulated by various endogenous or exogenous factors, such as chromatin state, hormone signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of genes that control SAM size is still limited, and in particular, the regulation by ROS signaling is only beginning to be comprehended. In this study, we report a new function in maintenance of SAM size, encoded by the OKINA KUKI1 (OKI1) gene. OKI1 is expressed in the SAM and encodes a mitochondrial aspartyl tRNA synthetase (AspRS). oki1 mutants display enlarged SAMs with abnormal expression of WUS and CLV3 and overaccumulation of ROS in the meristem. Our findings support the importance of normal AspRS function in the maintenance of the WUS–CLV3 feedback loop and SAM size.more » « less
An official website of the United States government
