Abstract Integrated optomechanical systems are a leading platform for manipulating, sensing, and distributing quantum information, but are limited by residual optical heating. Here, we demonstrate a two-dimensional optomechanical crystal (OMC) geometry with increased thermal anchoring and a mechanical mode at 7.4 GHz, well aligned with the operation range of cryogenic microwave hardware and piezoelectric transducers. The eight times better thermalization than current one-dimensional OMCs, large optomechanical coupling rates,g0/2π ≈ 880 kHz, and high optical quality factors,Qopt = 2.4 × 105, allow ground-state cooling (nm = 0.32) of the acoustic mode from 3 K and entering the optomechanical strong-coupling regime. In pulsed sideband asymmetry measurements, we show ground-state operation (nm < 0.45) at temperatures below 10 mK, with repetition rates up to 3 MHz, generating photon-phonon pairs at ≈ 147 kHz. Our results extend optomechanical system capabilities and establish a robust foundation for future microwave-to-optical transducers with entanglement rates exceeding state-of-the-art superconducting qubit decoherence rates.
more »
« less
Coherent optical coupling to surface acoustic wave devices
Abstract Surface acoustic waves (SAW) and associated devices are ideal for sensing, metrology, and hybrid quantum devices. While the advances demonstrated to date are largely based on electromechanical coupling, a robust and customizable coherent optical coupling would unlock mature and powerful cavity optomechanical control techniques and an efficient optical pathway for long-distance quantum links. Here we demonstrate direct and robust coherent optical coupling to Gaussian surface acoustic wave cavities with small mode volumes and high quality factors (>105measured here) through a Brillouin-like optomechanical interaction. High-frequency SAW cavities designed with curved metallic acoustic reflectors deposited on crystalline substrates are efficiently optically accessed along piezo-active directions, as well as non-piezo-active (electromechanically inaccessible) directions. The precise optical technique uniquely enables controlled analysis of dissipation mechanisms as well as detailed transverse spatial mode spectroscopy. These advantages combined with simple fabrication, large power handling, and strong coupling to quantum systems make SAW optomechanical platforms particularly attractive for sensing, material science, and hybrid quantum systems.
more »
« less
- PAR ID:
- 10560205
- Publisher / Repository:
- Nature
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Interfacing electronics with optical fiber networks is key to the long-distance transfer of classical and quantum information. Piezo-optomechanical transducers enable such interfaces by using gigahertz-frequency acoustic vibrations as mediators for converting microwave photons to optical photons via the combination of optomechanical and piezoelectric interactions. However, despite successful demonstrations, efficient quantum transduction remains out of reach due to the challenges associated with hybrid material integration and increased loss from piezoelectric materials when operating in the quantum regime. Here, we demonstrate an alternative approach in which we actuate 5-GHz phonons in a conventional silicon-on-insulator platform. In our experiment, microwave photons resonantly drive a phononic crystal oscillator via the electrostatic force realized in a charge-biased narrow-gap capacitor. The mechanical vibrations are subsequently transferred via a phonon waveguide to an optomechanical cavity, where they transform into optical photons in the sideband of a pump laser field. Operating at room temperature and atmospheric pressure, we measure a microwave-to-optical photon conversion efficiency of 1.72±0.14×10−7in a 3.3 MHz bandwidth. Our results mark a stepping stone towards quantum transduction with integrated devices made from crystalline silicon, which promise efficient high-bandwidth operation and integration with superconducting qubits. Additionally, the lack of need for piezoelectricity or other intrinsic nonlinearities makes our approach applicable to a wide range of materials for potential applications beyond quantum technologies.more » « less
-
Dholakia, Kishan; Spalding, Gabriel C (Ed.)Cavity optomechanics has led to advances in quantum sensing, optical manipulation of mechanical systems, and macroscopic quantum physics. However, previous studies have typically focused on cavity optomechanical coupling to translational degrees of freedom, such as the drum mode of a membrane, which modifies the amplitude and phase of the light field. Here, we discuss recent advances in “imaging-based” cavity optomechanics – where information about the mechanical resonator’s motion is imprinted onto the spatial mode of the optical field. Torsion modes are naturally measured with this coupling and are interesting for applications such as precision torque sensing, tests of gravity, and measurements of angular displacement at and beyond the standard quantum limit. In our experiment, the high-Q torsion mode of a Si3N4 nanoribbon modulates the spatial mode of an optical cavity with degenerate transverse modes. We demonstrate an enhancement of angular sensitivity read out with a split photodetector, and differentiate the “spatial” optomechanical coupling found in our system from traditional dispersive coupling. We discuss the potential for imaging-based quantum optomechanics experiments, including pondermotive squeezing and quantum back-action evasion in an angular displacement measurement.more » « less
-
Silicon carbide (SiC) has great potential for optomechanical applications due to its outstanding optical and mechanical properties. However, challenges associated with SiC nanofabrication have constrained its adoption in optomechanical devices, as embodied by the considerable optical loss or lack of integrated optical access in existing mechanical resonators. In this work, we overcome such challenges and demonstrate a low-loss, ultracompact optomechanical resonator in an integrated 4H-SiC-on-insulator (4H-SiCOI) photonic platform for the first time, to our knowledge. Based on a suspended 4.3-μm-radius microdisk, the SiC optomechanical resonator features low optical loss (<1 dB/cm), a high mechanical frequencyfmof 0.95×109 Hz, a mechanical quality factorQmof 1.92×104, and a footprint of <1×10−5 mm2. The correspondingfm·Qmproduct is estimated to be 1.82×1013 Hz, which is among the highest reported values of optomechanical cavities tested in ambient environment at room temperature. In addition, the strong optomechanical coupling in the SiC microdisk enables coherent regenerative optomechanical oscillations at a threshold optical dropped power of 14 μW, which also supports efficient harmonic generation at increased power levels. With such competitive performance, we envision a range of chip-scale optomechanical applications to be enabled by the low-loss 4H-SiCOI platform.more » « less
An official website of the United States government

