skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MXene‐Vitrimer Nanocomposites: Photo‐Thermal Repair, Reinforcement, and Conductivity at Low Volume Fractions Through a Percolative Voronoi‐Inspired Microstructure
Abstract An innovative process to multifunctional vitrimer nanocomposites with a percolative MXene minor phase is reported, marking a significant advancement in creating stimuli‐repairable, reinforced, sustainable, and conductive nanocomposites at diminished loadings. This achievement arises from a Voronoi‐inspired biphasic morphological design via a straight‐forward three‐step process involving ambient‐condition precipitation polymerization of micron‐sized prepolymer powders, aqueous powder‐coating with 2D MXene (Ti3C2Tz), and melt‐pressing of MXene‐coated powders into crosslinked films. Due to the formation of MXene‐rich boundaries between thiourethane vitrimer domains in a pervasive low‐volume fraction conductive network, a low percolation threshold (≈0.19 vol.%) and conductive polymeric nanocomposites (≈350 S m−1) are achieved. The embedded MXene skeleton mechanically bolsters the vitrimer at intermediate loadings, enhancing the modulus and toughness by 300% and 50%, respectively, without mechanical detriment compared to the neat vitrimer. The vitrimer's dynamic‐covalent bonds and MXene's photo‐thermal conversion properties enable repair in minutes through short‐term thermal treatments for full macroscopic mechanical restoration or in seconds under 785 nm light for rapid localized surface repair. This versatile fabrication method to nanocoated pre‐vitrimer powders and morphologically complex nanocomposites is compatible with classic composite manufacturing, and when coupled with the material's exceptional properties, holds immense potential for revolutionizing advanced composites and inspiring next‐generation smart materials.  more » « less
Award ID(s):
2211319 2216175
PAR ID:
10560228
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
37
Issue:
5
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract MXene and graphene cryogels have demonstrated excellent electromagnetic interference (EMI) shielding effectiveness due to their exceptional electrical conductivity, low density, and ability to dissipate electromagnetic waves through numerous internal interfaces. However, their synthesis demands costly reduction techniques and/or pre‐processing methods such as freeze‐casting to achieve high EMI shielding and mechanical performance. Furthermore, limited research has been conducted on optimizing the cryogel microstructures and porosity to enhance EMI shielding effectiveness while reducing materials consumption. Herein, a novel approach to produce ultra‐lightweight cryogels composed of Ti3C2Tx/graphene oxide (GO) displaying multiscale porosity is presented to enable high‐performance EMI shielding. This method uses controllable templating through the interfacial assembly of filamentous‐structured liquids that are readily converted into EMI cryogels. The obtained ultra‐flyweight cryogels (3–7 mg cm−3) exhibit outstanding specific EMI shielding effectiveness (33 000–50 000 dB cm2 g−1) while eliminating the need for chemical or thermal reduction. Furthermore, exceptional shielding is achieved when the Ti3C2Tx/GO cryogels are used as the backbone of conductive epoxy nanocomposites, yielding EMI shielding effectiveness of 31.7–51.4 dB at a low filler loading (0.3–0.7 wt%). Overall, a one‐of‐a‐kind EMI shielding system is introduced that is readily processed while affording scalability and performance. 
    more » « less
  2. Abstract Flexible nanocomposite films, with cobalt ferrite nanoparticles (CFN) as the ferromagnetic component and polyvinylidene fluoride–trifluoroethylene (PVDF-TrFE) copolymer as the ferroelectric matrix, were fabricated using a blade coating technique. Nanocomposite films were prepared using a two-step process; the first process involves the synthesis of cobalt ferrite (CoFe2O4) nanoparticles using a sonochemical method, and then incorporation of various weight percentages (0, 2.5, 5, and 10%) of cobalt ferrite nanoparticles into the PVDF-TrFE to form nanocomposites. The ferroelectric polarβphase of PVDF-TrFE was confirmed by x-ray diffraction (XRD). Thermal studies of films showed notable improvement in the thermal properties of the nanocomposite films with the incorporation of nanoparticles. The ferroelectric properties of the pure polymer/composite films were studied, showing a significant improvement of maximum polarization upon 5wt% CFN loading in PVDF-TrFE composite films compared to the PVDF-TrFE film. The magnetic properties of as-synthesized CFN and the polymer nanocomposites were studied, showing a magnetic saturation of 53.7 emu g−1at room temperature, while 10% cobalt ferrite-(PVDF-TrFE) nanocomposite shows 27.6 emu/g. We also describe a process for fabricating high optical quality pure PVDF-TrFE and pinhole-free nanocomposite films. Finally, the mechanical studies revealed that the mechanical strength of the films increases up to 5 wt% loading of the nanoparticles in the copolymer matrix and then decreases. This signifies that the obtained films could be suited for flexible electronics. 
    more » « less
  3. Abstract MXenes constitute a rapidly growing family of 2D materials that are promising for optoelectronic applications because of numerous attractive properties, including high electrical conductivity. However, the most widely used titanium carbide (Ti3C2Tx) MXene transparent conductive electrode exhibits insufficient environmental stability and work function (WF), which impede practical applications Ti3C2Txelectrodes in solution‐processed optoelectronics. Herein, Ti3C2TxMXene film with a compact structure and a perfluorosulfonic acid (PFSA) barrier layer is presented as a promising electrode for organic light‐emitting diodes (OLEDs). The electrode shows excellent environmental stability, highWFof 5.84 eV, and low sheet resistanceRSof 97.4 Ω sq−1. The compact Ti3C2Txstructure after thermal annealing resists intercalation of moisture and environmental contaminants. In addition, the PFSA surface modification passivates interflake defects and modulates theWF. Thus, changes in theWFandRSare negligible even after 22 days of exposure to ambient air. The Ti3C2TxMXene is applied for large‐area, 10 × 10 passive matrix flexible OLEDs on substrates measuring 6 × 6 cm. This work provides a simple but efficient strategy to overcome both the limited environmental stability and lowWFof MXene electrodes for solution‐processable optoelectronics. 
    more » « less
  4. Abstract Damage healing in fiber reinforced thermoset polymer composites has been generally divided into intrinsic healing by the polymer itself and extrinsic healing by incorporation of external healing agent. In this study, we propose to use a hybrid extrinsic-intrinsic self-healing strategy to heal delamination in laminated composite induced by low velocity impact. Especially, we propose to use an intrinsic self-healing thermoset vitrimer as an external healing agent, to heal delamination in laminated thermoset polymer composites. To this purpose, we designed and synthesized a new vitrimer, machined it into powders, and strategically sprayed a layer of vitrimer powders at the interface between the laminas during manufacturing. Also, a thermoset shape memory polymer with fire-proof property was used as the matrix. As a result, incorporation of about 3% by volume of vitrimer powders made the laminate exhibit multifunctionalities such as repeated delamination healing, excellent shape memory effect, improved toughness and impact tolerance, and decent fire-proof properties. In particular, the novel vitrimer powder imparted the laminate with first cycle and second cycle delamination healing efficiencies of 98.06% and 85.93%, respectively. The laminate also exhibited high recovery stress of 65.6 MPa. This multifunctional composite laminate has a great potential in various engineering applications, for example, actuators, robotics, deployable structures, and smart fire-proof structures. 
    more » « less
  5. Abstract Electronic devices are ubiquitous in modern society, yet their poor recycling rates contribute to substantial economic losses and worsening environmental impacts from electronic waste (E‐waste) disposal. Here, recyclable and healable electronics are reported through a vitrimer‐liquid metal (LM) microdroplet composite. These electrically conductive, yet plastic‐like composites display mechanical qualities of rigid thermosets and recyclability through a dynamic covalent polymer network. The composite exhibits a high glass transition temperature, good solvent resistance, high electrical conductivity, and recyclability. The vitrimer synthesis proceeds without the need for a catalyst or a high curing temperature, which enables facile fabrication of the composite materials. The as‐synthesized vitrimer exhibits a fast relaxation time with reconfigurability and shape memory. The electrically conductive composite exhibits high electrical conductivity with LM volume loading as low as 5 vol.%. This enables the fabrication of fully vitrimer‐based circuit boards consisting of sensors and indicator LEDs integrated with LM‐vitrimer conductive wiring. Electrical self‐healing and thermally triggered material healing are further demonstrated with the composites. The vitrimer and LM‐composite provide a pathway toward fully recyclable, mechanically robust, and reconfigurable electronics, thus advancing the field of electronic materials. 
    more » « less