Abstract The floral microenvironment impacts gametophyte viability and plant–pollinator interactions. Plants employ mechanisms to modify floral temperature, including thermogenesis, absorption of solar radiation, and evaporative cooling. Whether floral thermoregulation impacts reproductive fitness, and how floral morphological variation mediates thermoregulatory capacity are poorly understood.We measured temperature of the floral microenvironment in the field and tested for thermogenesis in the lab in early spring floweringHexastylis arifolia(Aristolochiaceae). We evaluated whether thermoregulatory capacity was associated with floral morphological variation. Finally, we experimentally determined the thermal optimum and tolerance of pollen to assess whether thermoregulation may ameliorate thermal stress to pollen.Pollen germination was optimal near 21 °C, with a 50% tolerance breadth of ~18 °C. In laboratory conditions, flowers exhibited thermogenesis of 1.5–4.8 °C for short intervals within a conserved timeframe (08:00–09:00 h). In the field, temperature inside the floral tube often deviated from ambient – floral interiors were up to 4 °C above ambient when it was cold, but some fell nearly 10 °C below ambient during peak heat. Flowers with smaller openings were cooler and more thermally stable than those with larger openings during peak heat. Thermoregulation maintained a floral microenvironment within the thermal tolerance breadth of pollen.Results suggest thatH. arifoliaflowers have a stronger capacity to cool than to warm, and that narrower floral openings create a distinct floral microenvironment, enhancing floral cooling effects. While deviation of floral temperature from ambient conditions maintains a suitable environment for pollen and suggests an adaptive role of thermoregulation, we discuss adaptive and nonadaptive mechanisms underlying floral warming and cooling.
more »
« less
Behavioural Thermoregulation of Flowers via Petal Movement
ABSTRACT Widely documented in animals, behavioural thermoregulation mitigates negative impacts of climate change. Plants experience especially strong thermal variability but evidence for plant behavioural thermoregulation is limited. Along a montane elevation gradient,Argentina anserinaflowers warm more in alpine populations than at lower elevation. We linked floral temperature with phenotypes to identify warming mechanisms and documented petal movement and pollinator visitation using time‐lapse cameras. High elevation flowers were more cupped, focused light deeper within flowers and were more responsive to air temperature than low; cupping when cold and flattening when warm. At high elevation, a 20° increase in petal angle resulted in a 0.46°C increase in warming. Warming increased pollinator visitation, especially under cooler high elevation temperatures. A plasticity study revealed constitutive elevational differences in petal cupping and stronger temperature‐induced floral plasticity in high elevation populations. Thus, plant populations have evolved different behavioural responses to temperature driving differences in thermoregulatory capacity.
more »
« less
- Award ID(s):
- 2015459
- PAR ID:
- 10560295
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 27
- Issue:
- 9
- ISSN:
- 1461-023X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Vairimorpha (=Nosema) ceranaeis a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competentV. ceranaehosts and previous work in experimental flight cages suggestsV. ceranaecan be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence ofV. ceranaeamong multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers—including the petals, stamen, and nectary—at six farms in southeastern Michigan, USA. We also determined the prevalence ofV. ceranaein honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greaterV. ceranaeprevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact onV. ceranaeprevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked withV. ceranaeprevalence in bumblebees. Further,V. ceranaeprevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increasedV. ceranaespillover to bumblebees in the field. Understanding howV. ceranaeprevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.more » « less
-
Abstract Thermal environments vary widely across species ranges, establishing the potential for local adaptation of thermal performance optima and tolerance. In the absence of local adaptation, selection should favor mechanisms to meet thermal optima. Floral temperature is a major determinant of reproductive success in angiosperms, yet whether gametic thermal performance shows signatures of local adaptation across temperature gradients, and how variation in gametic thermal performance influences floral evolution, is unknown. We characterized flowering season temperatures for the forb, Argentina anserina, at extremes of a 1000 m elevation gradient and generated thermal performance curves for pollen and ovule performance in populations at each extreme. Thermal optima fell between mean and maximum intrafloral temperatures. However, cooler high-elevation populations had ~4 °C greater pollen thermal optima than warmer low-elevation populations, while tolerance breadths did not differ. We then tested whether plants at elevational extremes differentially warmed the floral microenvironment. High-elevation flowers warmed significantly more than low, bringing intrafloral temperatures nearer the pollen optima. A manipulative experiment demonstrated that stronger warming in high elevation was conferred by floral tissues. Elevational divergence in floral warming may be driven, in part, by selection on flowers to meet different thermal demands of the gametophytes.more » « less
-
Climate change is likely to alter both flowering phenology and water availability for plants. Either of these changes alone can affect pollinator visitation and plant reproductive success. The relative impacts of phenology and water, and whether they interact in their impacts on plant reproductive success remain, however, largely unexplored. We manipulated flowering phenology and soil moisture in a factorial experiment with the subalpine perennial Mertensia ciliata (Boraginaceae). We examined responses of floral traits, floral abundance, pollinator visitation, and composition of visits by bumblebees vs. other pollinators. To determine the net effects on plant reproductive success, we also measured seed production and seed mass. Reduced water led to shorter, narrower flowers that produced less nectar. Late flowering plants produced fewer and shorter flowers. Both flowering phenology and water availability influenced pollination and reproductive success. Differences in flowering phenology had greater effects on pollinator visitation than did changes in water availability, but the reverse was true for seed production and mass, which were enhanced by greater water availability. The probability of receiving a flower visit declined over the season, coinciding with a decline in floral abundance in the arrays. Among plants receiving visits, both the visitation rate and percent of non-bumblebee visitors declined after the first week and remained low until the final week. We detected interactions of phenology and water on pollinator visitor composition, in which plants subject to drought were the only group to experience a late-season resurgence in visits by solitary bees and flies. Despite that interaction, net reproductive success measured as seed production responded additively to the two manipulations of water and phenology. Commonly observed declines in flower size and reward due to drought or shifts in phenology may not necessarily result in reduced plant reproductive success, which in M. ciliata responded more directly to water availability. The results highlight the need to go beyond studying single responses to climate changes, such as either phenology of a single species or how it experiences an abiotic factor, in order to understand how climate change may affect plant reproductive success.more » « less
-
Abstract Background Obtaining an optimal flower temperature can be crucial for plant reproduction because temperature mediates flower growth and development, pollen and ovule viability, and influences pollinator visitation. The thermal ecology of flowers is an exciting, yet understudied field of plant biology. Scope This review focuses on several attributes that modify exogenous heat absorption and retention in flowers. We discuss how flower shape, orientation, heliotropic movements, pubescence, coloration, opening–closing movements and endogenous heating contribute to the thermal balance of flowers. Whenever the data are available, we provide quantitative estimates of how these floral attributes contribute to heating of the flower, and ultimately plant fitness. Outlook Future research should establish form–function relationships between floral phenotypes and temperature, determine the fitness effects of the floral microclimate, and identify broad ecological correlates with heat capture mechanisms.more » « less
An official website of the United States government

