Abstract We present cosmological results from the measurement of baryon acoustic oscillations (BAO) in galaxy, quasar and Lyman-αforest tracers from the first year of observations from the Dark Energy Spectroscopic Instrument (DESI), to be released in the DESI Data Release 1. DESI BAO provide robust measurements of the transverse comoving distance and Hubble rate, or their combination, relative to the sound horizon, in seven redshift bins from over 6 million extragalactic objects in the redshift range 0.1 <z< 4.2. To mitigate confirmation bias, a blind analysis was implemented to measure the BAO scales. DESI BAO data alone are consistent with the standard flat ΛCDM cosmological model with a matter density Ωm=0.295±0.015. Paired with a baryon density prior from Big Bang Nucleosynthesis and the robustly measured acoustic angular scale from the cosmic microwave background (CMB), DESI requiresH0=(68.52±0.62) km s-1Mpc-1. In conjunction with CMB anisotropies fromPlanckand CMB lensing data fromPlanckand ACT, we find Ωm=0.307± 0.005 andH0=(67.97±0.38) km s-1Mpc-1. Extending the baseline model with a constant dark energy equation of state parameterw, DESI BAO alone requirew=-0.99+0.15-0.13. In models with a time-varying dark energy equation of state parametrised byw0andwa, combinations of DESI with CMB or with type Ia supernovae (SN Ia) individually preferw0> -1 andwa< 0. This preference is 2.6σfor the DESI+CMB combination, and persists or grows when SN Ia are added in, giving results discrepant with the ΛCDM model at the 2.5σ, 3.5σor 3.9σlevels for the addition of the Pantheon+, Union3, or DES-SN5YR supernova datasets respectively. For the flat ΛCDM model with the sum of neutrino mass ∑mνfree, combining the DESI and CMB data yields an upper limit ∑mν< 0.072 (0.113) eV at 95% confidence for a ∑mν> 0 (∑mν> 0.059) eV prior. These neutrino-mass constraints are substantially relaxed if the background dynamics are allowed to deviate from flat ΛCDM.
more »
« less
A bound on thermal $y$-distortion of the cosmic neutrino background
We consider the possibility that the cosmic neutrino background might have a nonthermal spectrum, and investigate its effect on cosmological parameters relative to standard $$\Lambda$$-Cold Dark Matter ($$\Lambda$$CDM) cosmology. As a specific model, we consider a thermal $$y$$-distortion, which alters the distribution function of the neutrino background by depleting the population of low-energy neutrinos and enhancing the high-energy tail. We constrain the thermal $$y$$-parameter of the cosmic neutrino background using Cosmic Microwave Background (CMB) and Baryon Acoustic Oscillation (BAO) measurements, and place a $$95\%$$-confidence upper bound of $$y \leq 0.043$$. The $$y$$-parameter increases the number of effective relativistic degrees of freedom, reducing the sound horizon radius and increasing the best-fit value for the Hubble constant $$H_0$$. We obtain an upper bound on the Hubble constant of $$H_0 = 71.12\ \mathrm{km/s/Mpc}$$ at $$95\%$$ confidence, substantially reducing the tension between CMB/BAO constraints and direct measurement of the expansion rate from Type-Ia supernovae. Including a spectral distortion also allows for a higher value of the spectral index of scalar fluctuations, with a best-fit of $$n_{\mathrm{S}} = 0.9720 \pm 0.0063$$, and a $$95\%$$-confidence upper bound of $$n_{\mathrm{S}} \leq 0.9842$$.
more »
« less
- Award ID(s):
- 2310363
- PAR ID:
- 10560316
- Publisher / Repository:
- Physical Review D
- Date Published:
- Journal Name:
- Physical review D
- ISSN:
- 2470-0029
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We calculate high-precision constraints on Natural Inflation relative to current observational constraints from Planck 2018 + BICEP/Keck(BK15) Polarization + BAO on r and n_{S} , including post-inflationary history of the universe. We find that, for conventional post-inflationary dynamics, Natural Inflation with a cosine potential is disfavored at greater than 95% confidence out by current data. If we assume protracted reheating characterized by w̅>1/3, Natural Inflation can be brought into agreement with current observational constraints. However, bringing unmodified Natural Inflation into the 68% confidence region requires values of T_{re} below the scale of electroweak symmetry breaking. The addition of a SHOES prior on the Hubble Constant H_{0} only worsens the fit.more » « less
-
A bstract We present cosmological constraints on the sum of neutrino masses as a function of the neutrino lifetime, in a framework in which neutrinos decay into dark radiation after becoming non-relativistic. We find that in this regime the cosmic microwave background (CMB), baryonic acoustic oscillations (BAO) and (uncalibrated) luminosity distance to supernovae from the Pantheon catalog constrain the sum of neutrino masses ∑ m ν to obey ∑ m ν < 0 . 42 eV at (95% C.L.). While the bound has improved significantly as compared to the limits on the same scenario from Planck 2015, it still represents a significant relaxation of the constraints as compared to the stable neutrino case. We show that most of the improvement can be traced to the more precise measurements of low- ℓ polarization data in Planck 2018, which leads to tighter constraints on τ reio (and thereby on A s ), breaking the degeneracy arising from the effect of (large) neutrino masses on the amplitude of the CMB power spectrum.more » « less
-
ABSTRACT We measure the current expansion rate of the Universe, Hubble’s constant $$H_0$$, by calibrating the absolute magnitudes of supernovae to distances measured by baryon acoustic oscillations (BAO). This ‘inverse distance ladder’ technique provides an alternative to calibrating supernovae using nearby absolute distance measurements, replacing the calibration with a high-redshift anchor. We use the recent release of 1829 supernovae from the Dark Energy Survey spanning $$0.01\lt z\lt 1.13$$ anchored to the recent baryon acoustic oscillation measurements from Dark Energy Spectroscopic Instrument (DESI) spanning $$0.30 \lt z_{\mathrm{eff}}\lt 2.33$$. To trace cosmology to $z=0$, we use the third-, fourth-, and fifth-order cosmographic models, which, by design, are agnostic about the energy content and expansion history of the universe. With the inclusion of the higher redshift DESI-BAO data, the third-order model is a poor fit to both data sets, with the fourth-order model being preferred by the Akaike Information Criterion. Using the fourth-order cosmographic model, we find $$H_0=67.19^{+0.66}_{-0.64}\mathrm{~km} \mathrm{~s}^{-1} \mathrm{~Mpc}^{-1}$$, in agreement with the value found by Planck without the need to assume Flat-$$\Lambda$$CDM. However, the best-fitting expansion history differs from that of Planck, providing continued motivation to investigate these tensions.more » « less
-
Abstract We use new cosmic microwave background (CMB) primary temperature and polarization anisotropy measurements from the Atacama Cosmology Telescope (ACT) Data Release 6 (DR6) to test foundational assumptions of the standard cosmological model, ΛCDM, and set constraints on extensions to it. We derive constraints from the ACT DR6 power spectra alone, as well as in combination with legacy data from thePlanckmission. To break geometric degeneracies, we include ACT andPlanckCMB lensing data and baryon acoustic oscillation data from DESI Year-1. To test the dependence of our results on non-ACT data, we also explore combinations replacingPlanckwithWMAPand DESI with BOSS, and further add supernovae measurements from Pantheon+ for models that affect the late-time expansion history. We verify the near-scale-invariance (running of the spectral indexdns/dlnk= 0.0062 ± 0.0052) and adiabaticity of the primordial perturbations. Neutrino properties are consistent with Standard Model predictions: we find no evidence for new light, relativistic species that are free-streaming (Neff= 2.86 ± 0.13, which combined with astrophysical measurements of primordial helium and deuterium abundances becomesNeff= 2.89 ± 0.11), for non-zero neutrino masses (∑mν< 0.089 eV at 95% CL), or for neutrino self-interactions. We also find no evidence for self-interacting dark radiation (Nidr< 0.134), or for early-universe variation of fundamental constants, including the fine-structure constant (αEM/αEM,0= 1.0043 ± 0.0017) and the electron mass (me/me,0= 1.0063 ± 0.0056). Our data are consistent with standard big bang nucleosynthesis (we findYp= 0.2312 ± 0.0092), theCOBE/FIRAS-inferred CMB temperature (we findTCMB= 2.698 ± 0.016 K), a dark matter component that is collisionless and with only a small fraction allowed as axion-like particles, a cosmological constant (w= -0.986 ± 0.025), and the late-time growth rate predicted by general relativity (γ= 0.663 ± 0.052). We find no statistically significant preference for a departure from the baseline ΛCDM model. In fits to models invoking early dark energy, primordial magnetic fields, or an arbitrary modified recombination history, we findH0= 69.9+0.8-1.5, 69.1 ± 0.5, or 69.6 ± 1.0 km/s/Mpc, respectively; using BOSS instead of DESI BAO data reduces the central values of these constraints by 1–1.5 km/s/Mpc while only slightly increasing the error bars. In general, models introduced to increase the Hubble constant or to decrease the amplitude of density fluctuations inferred from the primary CMB are not favored over ΛCDM by our data.more » « less
An official website of the United States government

