skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pushed waves, trailing edges, and extreme events: Eco‐evolutionary dynamics of a geographic range shift in the owl limpet, Lottia gigantea
As climatic variation re‐shapes global biodiversity, understanding eco‐evolutionary feedbacks during species range shifts is of increasing importance. Theory on range expansions distinguishes between two different forms: “pulled” and “pushed” waves. Pulled waves occur when the source of the expansion comes from low‐density peripheral populations, while pushed waves occur when recruitment to the expanding edge is supplied by high‐density populations closer to the species' core. How extreme events shape pushed/pulled wave expansion events, as well as trailing‐edge declines/contractions, remains largely unexplored. We examined eco‐evolutionary responses of a marine invertebrate (the owl limpet,Lottia gigantea) that increased in abundance during the 2014–2016 marine heatwaves near the poleward edge of its geographic range in the northeastern Pacific. We used whole‐genome sequencing from 19 populations across >11 degrees of latitude to characterize genomic variation, gene flow, and demographic histories across the species' range. We estimated present‐day dispersal potential and past climatic stability to identify how contemporary and historical seascape features shape genomic characteristics. Consistent with expectations of a pushed wave, we found little genomic differentiation between core and leading‐edge populations, and higher genomic diversity at range edges. A large and well‐mixed population in the northern edge of the species' range is likely a result of ocean current anomalies increasing larval settlement and high‐dispersal potential across biogeographic boundaries. Trailing‐edge populations have higher differentiation from core populations, possibly driven by local selection and limited gene flow, as well as high genomic diversity likely as a result of climatic stability during the Last Glacial Maximum. Our findings suggest that extreme events can drive poleward range expansions that carry the adaptive potential of core populations, while also cautioning that trailing‐edge extirpations may threaten unique evolutionary variation. This work highlights the importance of understanding how both trailing and leading edges respond to global change and extreme events.  more » « less
Award ID(s):
2023297
PAR ID:
10560331
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Change Biology
Volume:
30
Issue:
7
ISSN:
1354-1013
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate-driven warming and changes in major ocean currents enable poleward larval transport and range expansions of many marine species. Here, we report the population genetic structure of the gastropodKelletia kelletii, a commercial fisheries species and subtidal predator with top-down food web effects, whose populations have recently undergone climate-driven northward range expansion. We used reduced representation genomic sequencing (RAD-seq) to genotype 598 adults from 13 locations spanning approximately 800 km across the historical and expanded range of this species. Analyses of 40747 single nucleotide polymorphisms (SNPs) showed evidence for long-distance dispersal ofK. kelletiilarvae from a central historical range site (Point Loma, CA, USA) hundreds of km into the expanded northern range (Big Creek, CA), which seems most likely to result from transport during an El Niño-Southern Oscillation (ENSO) event rather than consistent on-going gene flow. Furthermore, the high genetic differentiation among some sampled expanded-range populations and their close genetic proximity with distinct populations from the historical range suggested multiple origins of the expanded-range populations. Given that the frequency and magnitude of ENSO events are predicted to increase with climate change, understanding the factors driving changes in population connectivity is crucial for establishing effective management strategies to ensure the persistence of this and other economically and ecologically important species. 
    more » « less
  2. Shifting range limits are predicted for many species as the climate warms. However, the rapid pace of climate change will challenge the natural dispersal capacity of long-lived, sessile organisms such as forest trees. Adaptive responses of populations will, therefore, depend on levels of genetic variation and plasticity for climate-responsive traits, which likely vary across the range due to expansion history and current patterns of selection. Here, we study levels of genetic and plastic variation for phenology and growth traits in populations of red spruce ( Picea rubens ), from the range core to the highly fragmented trailing edge. We measured more than 5000 offspring sampled from three genetically distinct regions (core, margin and edge) grown in three common gardens replicated along a latitudinal gradient. Genetic variation in phenology and growth showed low to moderate heritability and differentiation among regions, suggesting some potential to respond to selection. Phenology traits were highly plastic, but this plasticity was generally neutral or maladaptive in the effect on growth, revealing a potential liability under warmer climates. These results suggest future climate adaptation will depend on the regional availability of genetic variation in red spruce and provide a resource for the design and management of assisted gene flow. This article is part of the theme issue ‘Species’ ranges in the face of changing environments (Part II)’. 
    more » « less
  3. Tropical mountains hold more biodiversity than their temperate counterparts, and this disparity is often associated with the latitudinal climatic gradient. However, distinguishing the impact of latitude versus the background effects of species history and traits is challenging due to the evolutionary distance between tropical and temperate assemblages. Here, we test whether microevolutionary processes are linked to environmental variation across a sharp latitudinal transition in 21 montane birds of the southern Atlantic Forest in Brazil. We find that effective dispersal within populations in the tropical mountains is lower and genomic differentiation is better predicted by the current environmental complexity of the region than within the subtropical populations. The concordant response of multiple co-occurring populations is consistent with spatial climatic variability as a major process driving population differentiation. Our results provide evidence for how a narrow latitudinal gradient can shape microevolutionary processes and contribute to broader scale biodiversity patterns. 
    more » « less
  4. Theoretically, species' characteristics should allow estimation of dispersal potential and, in turn, explain levels of population genetic differentiation. However, a mismatch between traits and genetic patterns is often reported for marine species, and interpreted as evidence that life-history traits do not influence dispersal. Here, we couple ecological and genomic methods to test the hypothesis that species with attributes favouring greater dispersal potential—e.g., longer pelagic duration, higher fecundity and larger population size—have greater realized dispersal overall. We used a natural experiment created by a large-scale and multispecies mortality event which created a “clean slate” on which to study recruitment dynamics, thus simplifying a usually complex problem. We surveyed four species of differing dispersal potential to quantify the abundance and distribution of recruits and to genetically assign these recruits to probable parental sources. Species with higher dispersal potential recolonized a broader extent of the impacted range, did so more quickly and recovered more genetic diversity than species with lower dispersal potential. Moreover, populations of taxa with higher dispersal potential exhibited more immigration (71%–92% of recruits) than taxa with lower dispersal potential (17%–44% of recruits). By linking ecological with genomic perspectives, we demonstrate that a suite of interacting life-history and demographic attributes do influence species' realized dispersal and genetic neighbourhoods. To better understand species' resilience and recovery in this time of global change, integrative eco-evolutionary approaches are needed to more rigorously evaluate the effect of dispersal-linked attributes on realized dispersal and population genetic differentiation. 
    more » « less
  5. Jennifer Powers (Ed.)
    Recolonization of secondary forests happens when individuals disperse from a nearby source old-growth forest populations. This pattern of recolonization could be (a) the result of a random subset of individuals dispersing and colonizing nearby secondary habitats. Instead, the set of recolonizing individuals may not be random but have a particular set of characteristics. (b) Old-growth source populations could show spatial sorting where highly dispersive individuals (those with larger limbs, or exploratory and aggressive behavior) are overrepresented in the forest patch edges and more likely to colonize nearby patches. These are often known as “pull” expansions because highly dispersive individuals living at the edge of the source population are the ones “pulling” the expansion. Alternatively, (c) because old-growth populations are expected to be at carrying capacity recolonization may be driven by subordinate individuals that cannot outcompete dominant conspecifics and disperse looking for alternative territories. This is the case of “push” expansions when dispersal is driven by these subordinate individuals that are pushed away due to density dependence. 
    more » « less