skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 6, 2025

Title: Composite Recycling with Biocatalytic Thermoset Reforming
Carbon fiber reinforced polymers (CFRPs, or composites) are increasingly replacing traditional manufacturing materials used in the automobile, aerospace, and energy sectors. With this shift, it is vital to develop end-of-life processes for CFRPs that retain the value of both the carbon fibers and the polymer matrix. Here we demonstrate a strategy to upcycle pre- and post-con- sumer polystyrene-containing CFRPs, crosslinked with unsaturated polyesters or vinyl esters, to benzoic acid. The thermoset matrix is upgraded via biocatalysis utilizing an engineered strain of the filamentous fungus Aspergillus nidulans, which gives access to valuable secondary metabolites in high yields, exemplified here by (2Z,4Z,6E)-octa-2,4,6-trienoic acid. Reactions are engineered to preserve the carbon fibers, with much of their sizing, so that the isolated carbon fiber plies are manufactured into new composite coupons that exhibit mechanical properties comparable to virgin manufacturing substrates. In sum, this represents the first system to reclaim high value from both the fiber fabric and polymer matrix of a CFRP.  more » « less
Award ID(s):
2227649 2134658
PAR ID:
10560383
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
146
Issue:
44
ISSN:
0002-7863
Page Range / eLocation ID:
30004 to 30008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper utilizes a periodic unit cell modeling technique combined with finite element analysis (FEA) to predict and understand the mechanical behaviors of a nanotechnology-enhanced carbon fiber reinforced polymers (CFRPs) composite. This research specifically focuses on the study of novel Z-threaded CFRPs (ZT-CFRPs) that are reinforced not only by unidirectional carbon fibers but also with numerous carbon nanofibers (CNFs) threading through the CFRP laminate in the z-direction (i.e., through-thickness direction). The complex multi-scaled orthogonally-structured carbon reinforced polymer composite is modeled starting from a periodic unit cell, which is the smallest periodic building-block representation of the material. The ZT-CFRP unit cell includes three major components, i.e., carbon fibers, polymer matrix, and carbon nanofiber Z-threads. To compare the mechanical behavior of ZT-CFRPs against unmodified, control CFRPs, an additional unit cell without CNF reinforcement was also created and analyzed. The unit cells were then meshed into finite element models and subjected to different loading conditions to predict the interaction among all their components. The elastic moduli of both unit-cells in the z-direction were calculated from the FEA data. By assuming the CNFs have the same mechanical properties of T-300 carbon fiber, the numerical modeling showed that the ZT-CFRPs exhibited a 14% improvement in z-directional elastic modulus due to the inclusion of 1 wt% CNF z-threads, indicating that ZT-CFRPs are stiffer compared to control CFRPs consisting of T-300 carbon fibers and epoxy. 
    more » « less
  2. Depositing carbon nanotubes (CNTs) into carbon fiber reinforced polymer composites (CFRPs) is challenging because of the need for complicated lab-scale processes and toxic chemical dispersants that makes conventional means of processing less compatible with existing industrial procedures for large-scale applications. In this work, a scalable supercritical CO2-assisted atomization technique is used to effectively deposit hybrid CNTs in CFRPs allowing them to boost their functionality and tailor the microstructure. Cellulose nanocrystals (CNCs) are utilized to create hybrid nanostructures with CNTs (CNC bonded CNT) that enables stabilization of CNTs in nontoxic media, i.e., water, and this promotes the scalability of the process. According to Zeta potential values, CNCs successfully stabilize CNTs in water suspension. Scanning electron microscopy (SEM) micrographs show hybrid CNC bonded CNTs are homogeneously dispersed on the carbon fiber surface. According to the in-situ bending test under the optical microscope, crack propagation is hindered by engineered hybrid CNT nanostructures in the modified CFRP whereas neat CFRP exhibits low crack growth resistance due to the uninterrupted crack propagation in the continuous epoxy matrix. Our results imply that this strategy probes the importance of new controlled manufacturing of hybrid nanostructures through evaporation‑induced self‑assembly of nanocolloidal droplets, and allows for tailoring of the desired properties of nanostructured composites. 
    more » « less
  3. Carbon fiber reinforced polymer (CFRP) composites are uniquely essential materials in the aerospace, automobile, energy, sporting, and an increasing number of other industries. Consequently, we are amassing an accumulation of CFRP waste latent in value. Electrochemical techniques to recycle carbon fiber reinforced polymers have recently emerged as viable methods to remove the composite matrix from these materials and recover fibers. In many of these techniques, the composite is immersed in a solvent and acts as an electrochemical anode while a voltage is applied to the electrolytic cell. Still, few methods leverage the conductivity of the composite to mediate its own disassembly. We have introduced an electrolytic method that leverages this conductivity to electrolyze acetic acid to form methyl radicals that cleave the C-N bonds of the epoxy matrix and cleanly separate ordered fibers from the matrix. This talk will discuss the motivation and development for this new electrochemical method and explain the chemical mechanism through which it works. 
    more » « less
  4. The presence of voids within the microstructure of short carbon fiber polymer composites produced by additive manufacturing (AM) technology are known to alter the expected material behavior that impair part performance. Previous research efforts aimed at understanding the formation mechanisms of these micro-voids during the polymer extrusion/deposition process have not kept up with the advancement of this AM technology. The present study investigates the phenomenon of micro-void nucleation at the fiber/matrix interface, especially those that form at fiber tips, by characterizing the microstructural configuration of a 13 % carbon fiber filled ABS polymer composite print bead specimen using 3D X-ray micro computed tomography image acquisition and analysis. The results reveal a high level of micro-voids segregation at the ends of fibers that are relatively larger in size and less spherical as compared to micro-voids isolated within the ABS matrix. Additionally, by simulating the hydrostatic flow-field pressure distribution surrounding a single rigid ellipsoidal fibre in colloidal suspension using Jeffery’s model equations, we show that the pressure drops to a critical value at the fibre tips where the micro-voids nucleation is experimentally observed to occur. The study helps to improve our understanding of the potential mechanisms that may be responsible for micro-void development within beads printed with extrusion/ deposition AM. 
    more » « less
  5. Carbon fiber reinforced plastics (CFRPs) are widely used due to their high strength to weight ratios. A common process manufacturers use to increase the strength to weight ratio is debulking. Debulking is the process of transversely compacting a dry fibrous reinforcement prior to wet out with the matrix resin, in order to induce fiber nesting, effectively increasing the volume fraction of the sample. While this process is widely understood macroscopically its effects on fibrous microstructures have not yet been well characterized. The aim of this work is to compare the microstructures of three CFRPs, varying only the debulking step in the manufacturing process. The microstructural effects of debulking on three unidirectional CFRPs made from three different levels of debulking were studied. High resolution serial sections of all three samples were taken using the UES ROBO-MET at the NASA Glenn Research Center in Cleveland, Ohio. Using these scans, the fiber positions were measured and connected to make fiber paths. Statistical descriptors such as local fiber and void volume fractions, and void distribution and morphology were then generated for each sample and compared. Using these descriptors, the effects of debulking on the composite microstructure can be measured. 
    more » « less