Abstract Vegetation structural complexity and biodiversity tend to be positively correlated, but understanding of this relationship is limited in part by structural metrics tending to quantify only horizontal or vertical variation, and that do not reflect internal structure. We developed new metrics for quantifying internal vegetation structural complexity using terrestrial LiDAR scanning and applied them to 12 NEON forest plots across an elevational gradient in Great Smoky Mountains National Park, USA. We asked (1) How do our newly developed structure metrics compare to traditional metrics? (2) How does forest structure vary with elevation in a high‐biodiversity, high topographic complexity region? (3) How do forest structural metrics vary in the strength of their relationships with vascular plant biodiversity? Our new measures of canopy density (Depth) and structural complexity (σDepth), and their canopy height‐normalized counterparts, were sensitive to structural variations and effectively summarized horizontal and vertical dimensions of structural complexity. Forest structure varied widely across plots spanning the elevational range of GRSM, with taller, more structurally complex forests at lower elevation. Vascular plant biodiversity was negatively correlated with elevation and more strongly positively correlated with vegetation structure variables. The strong correlations we observed between canopy structural complexity and biodiversity suggest that structural complexity metrics could be used to assay plant biodiversity over large areas in concert with airborne and spaceborne platforms.
more »
« less
Using multiscale lidar to determine variation in canopy structure from African forest elephant trails
Abstract Recently classified as a unique species by the IUCN, African forest elephants (Loxodonta cyclotis) are critically endangered due to severe poaching. With limited knowledge about their ecological role due to the dense tropical forests they inhabit in central Africa, it is unclear how the Afrotropics are influenced by elephants. Although their role as seed dispersers is well known, they may also drive large‐scale processes that determine forest structure through the creation of elephant trails and browsing the understory, allowing larger, carbon‐dense trees to succeed. Multiple scales of lidar were collected by NASA in Lopé National Park, Gabon from 2015 to 2022. Utilizing two airborne lidar datasets in an African forest elephant stronghold, detailed canopy structural information was used in conjunction with elephant trail data to determine how forest structure varies on and off trails. Forest along elephant trails displayed different structural characteristics than forested areas off trails, with lower canopy height, canopy cover, and different vertical distribution of plant density. Less plant area density was found on trails at 1 m in height, while more vegetation was found at 12 m, compared to off trail locations. Trails in forest areas with previous logging history had lower plant area in the top of the canopy. Forest elephants can be considered as “logging light” ecosystem engineers, affecting canopy structure through browsing and movement. Both airborne lidar scales were able to capture elephant impact along trails, with the high‐resolution discrete return lidar performing higher than waveform lidar.
more »
« less
- Award ID(s):
- 1829075
- PAR ID:
- 10560576
- Publisher / Repository:
- Remote Sensing in Ecology and Conservation
- Date Published:
- Journal Name:
- Remote Sensing in Ecology and Conservation
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2056-3485
- Page Range / eLocation ID:
- 655 to 667
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plant functional diversity is strongly connected to photosynthetic carbon assimilation in terrestrial ecosystems. However, many of the plant functional traits that regulate photosynthetic capacity, including foliar nitrogen concentration and leaf mass per area, vary significantly between and within plant functional types and vertically through forest canopies, resulting in considerable landscape‐scale heterogeneity in three dimensions. Hyperspectral imagery has been used extensively to quantify functional traits across a range of ecosystems but is generally limited to providing information for top of canopy leaves only. On the other hand, lidar data can be used to retrieve the vertical structure of forest canopies. Because these data are rarely collected at the same time, there are unanswered questions about the effect of forest structure on the three ‐dimensional spatial patterns of functional traits across ecosystems. In the United States, the National Ecological Observatory Network's Airborne Observation Platform (NEON AOP) provides an opportunity to address this structure‐function relationship by collecting lidar and hyperspectral data together across a variety of ecoregions. With a fusion of hyperspectral and lidar data from the NEON AOP and field‐collected foliar trait data, we assessed the impacts of forest structure on spatial patterns of N. In addition, we examine the influence of abiotic gradients and management regimes on top‐of‐canopy percent N and total canopy N (i.e., the total amount of N [g/m2] within a forest canopy) at a NEON site consisting of a mosaic of open longleaf pine and dense broadleaf deciduous forests. Our resulting maps suggest that, in contrast to top of canopy values, total canopy N variation is dampened across this landscape resulting in relatively homogeneous spatial patterns. At the same time, we found that leaf functional diversity and canopy structural diversity showed distinct dendritic patterns related to the spatial distribution of plant functional types.more » « less
-
The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is spreading into the forests of the northeastern United States, driven by the warmer winter temperatures associated with climate change. The initial stages of this disturbance are difficult to detect with passive optical remote sensing, since the insect often causes its host species, eastern hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing impacts in the overstory. New active remote sensing technologies—such as the recently launched NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this limitation by penetrating canopy gaps and recording lower canopy structural changes. This study explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the ForestGEO site. Hemlock plots were shown to be undergoing dynamic changes as a result of the HWA infestation, losing substantial plant area in the middle canopy, while still growing in the upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a logistic regression model. The robustness of these structure-condition relationships held even when simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. These results show promise for future disturbance monitoring studies with ALS and GEDI lidar data.more » « less
-
Structural diversity is a key feature of forest ecosystems that influences ecosystem functions from local to macroscales. The ability to measure structural diversity in forests with varying ecological composition and management history can improve the understanding of linkages between forest structure and ecosystem functioning. Terrestrial LiDAR has often been used to provide a detailed characterization of structural diversity at local scales, but it is largely unknown whether these same structural features are detectable using aerial LiDAR data that are available across larger spatial scales. We used univariate and multivariate analyses to quantify cross-compatibility of structural diversity metrics from terrestrial versus aerial LiDAR in seven National Ecological Observatory Network sites across the eastern USA. We found strong univariate agreement between terrestrial and aerial LiDAR metrics of canopy height, openness, internal heterogeneity, and leaf area, but found marginal agreement between metrics that described heterogeneity of the outermost layer of the canopy. Terrestrial and aerial LiDAR both demonstrated the ability to distinguish forest sites from structural diversity metrics in multivariate space, but terrestrial LiDAR was able to resolve finer-scale detail within sites. Our findings indicated that aerial LiDAR could be of use in quantifying broad-scale variation in structural diversity across macroscales.more » « less
-
Abstract Understanding the determinants of urban forest diversity and structure is important for preserving biodiversity and sustaining ecosystem services in cities. However, comprehensive field assessments are resource‐intensive, and landscape‐level approaches may overlook heterogeneity within urban regions. To address this challenge, we combined remote sensing with field inventories to comprehensively map and analyze urban forest attributes in forest patches across the Minneapolis‐St. Paul Metropolitan Area (MSPMA) in a multistep process. First, we developed predictive machine learning models of forest attributes by integrating data from forest inventories (from 40 12.5‐m‐radius plots) with Global Ecosystem Dynamics Investigation (GEDI) observations and Sentinel‐2‐derived land surface phenology (LSP). These models enabled accurate predictions of forest attributes, specifically nine metrics of plant diversity (tree species richness, tree abundance, and understory plant abundance), structure (average canopy height, dbh, and canopy density), and structural complexity (variability in canopy height, dbh, and canopy density) with relative errors ranging between 11% and 21%. Second, we applied these machine learning models to predict diversity metrics for 804 additional plots from GEDI and Sentinel‐2. Finally, we applied Bayesian multilevel models to the predicted diversity metrics to assess the influence of multiple factors—patch dimensions, landscape attributes, plot position, and jurisdictional agency—on these forest attributes across the 804 predicted plots. The models showed all predictors have some degree of effect on forest attributes, presenting varying explanatory power withR2values ranging from 0.071 to 0.405. Overall, plot characteristics (e.g., distance to nearest trail, proximity to forest edge) and jurisdictional agency explained a large portion of the variability across patches, whereas patch and landscape characteristics did not. The relative effect of plot versus management sets of predictors on the marginal ΔR2was heterogeneous across metrics and ecological subsections (an ecological classification designation). The multiplicity of determinants influencing urban forests emphasizes the intricate nature of urban ecosystems and highlights nuanced, heterogeneous relationships between urban ecological and anthropogenic factors that determine forest properties. Effectively enhancing biodiversity in urban forests requires assessments, management, and conservation strategies tailored for context‐specific characteristics.more » « less
An official website of the United States government

