Hybrid organic–inorganic perovskites (HOIPs) such as methylammonium lead iodide (MAPbI3) are promising candidates for use in photovoltaic cells and other semiconductor applications, but their limited chemical stability poses obstacles to their widespread use.
Phase stability, and the limits thereof, are a central concern of materials thermodynamics. However, the temperature limits of equilibrium liquid stability in chemical systems have only been widely characterized under constant (typically atmospheric) pressure conditions, whereunder these limits are represented by the eutectic. At higher pressures, the eutectic will shift in both temperature and chemical composition, opening a wide thermodynamic parameter space over which the absolute limit of liquid stability, i.e., the limit under arbitrary values of the thermodynamic forces at play (here pressure and concentration), might exist. In this work, we use isochoric freezing and melting to measure this absolute limit for the first time in several binary aqueous brines, and nodding to the etymology of “eutectic”, we name it the “cenotectic” (from Greek “κοινός-τῆξῐς”, meaning “universal-melt”). We discuss the implications of our findings on ocean worlds within our solar system and cold ocean exoplanets; estimate thermodynamic limits on ice crust thickness and final ocean depth (of the cenotectic or “endgame” ocean) using measured cenotectic pressures; and finally provide a generalized thermodynamic perspective on (and definition for) this fundamental thermodynamic invariant point.
more » « less- PAR ID:
- 10560720
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Ab initio modeling of finite-temperature and pressure thermodynamic equilibria of HOIPs with their decomposition products can reveal stability limits and help develop mitigation strategies. We here use a previously published experimental temperature-pressure equilibrium to benchmark and demonstrate the applicability of the harmonic and quasiharmonic approximations, combined with a simple entropy correction for the configurational freedom of methylammonium cations in solid MAPbI3and for several density functional approximations, to the thermodynamics of MAPbI3decomposition. We find that these approximations, together with the dispersion-corrected hybrid density functional HSE06, yield remarkably good agreement with the experimentally assessed equilibrium betweenT = 326 K andT = 407 K, providing a solid foundation for future broad thermodynamic assessments of HOIP stability. -
Abstract There has been a long debate on the stable phase of iron under the Earth’s inner core conditions. Because of the solid‐liquid coexistence at the inner core boundary, the thermodynamic stability of solid phases directly relates to their melting temperatures, which remains considerable uncertainty. In the present study, we utilized a semi‐empirical potential fitted to high‐temperature
ab initio data to perform a thermodynamic integration from classical systems described by this potential toab initio systems. This method provides a smooth path for thermodynamic integration and significantly reduces the uncertainty caused by the finite‐size effect. Our results suggest the hcp phase is the stable phase of pure iron under the inner core conditions, while the free energy difference between the hcp and bcc phases is tiny, on the order of 10 s meV/atom near the melting temperature. -
Abstract We perform ab initio simulations of beryllium (Be) and magnesium oxide (MgO) at megabar pressures and compare their structural and thermodynamic properties. We make a detailed comparison of our two recently derived phase diagrams of Be (Wu et al 2021 Phys. Rev. B 104 014103) and MgO (Soubiran and Militzer 2020 Phys. Rev. Lett. 125 175701) using the thermodynamic integration technique, as they exhibit striking similarities regarding their shape. We explore whether the Lindemann criterion can explain the melting temperatures of these materials through the calculation of the Debye temperature at high pressure. From our free energy calculations, we find that the melting line of both materials is well represented by the Simon–Glazel fit T m ( P ) = T 0 (1 + P / a ) 1/ c , where T 0 = 1564 K, a = 15.8037 GPa and c = 2.4154 for Be, while T 0 = 3010 K, a = 10.5797 GPa and c = 2.8683 for the MgO in the B1. For the B2 phase, we use the values a = 26.1163 GPa and c = 2.2426. Both materials exhibit negative Clapeyron slopes on the boundaries between the two solid phases that are strongly affected by anharmonic effects, which also influence the location of the solid–solid–liquid triple point. We find that the quasi-harmonic approximation underestimates the stability range of the low-pressure phases, namely hcp for Be and B1 for MgO. We also compute the phonon dispersion relations at low and high pressure for each of the phases of these materials, and also explore how the phonon density of states is modified by temperature. Finally, we derive secondary shock Hugoniot curves in addition to the principal Hugoniot curve for both materials, and study their offsets in pressure between solid and liquid branches.more » « less
-
The rare-earth tritellurides (RTe 3 ) are a distinct class of 2D layered materials that recently gained significant attention due to hosting such quantum collective phenomena as superconductivity or charge density waves (CDWs). Many members of this van der Waals (vdW) family crystals exhibit CDW behavior at room temperature, i.e. , RTe 3 compound where R = La, Ce, Pr, Nd, Sm, Gd, and Tb. Here, our systematic studies establish the CDW properties of RTe 3 when the vdW spacing/interaction strength between adjacent RTe 3 layers is engineered under extreme hydrostatic pressures. Using a non-destructive spectroscopy technique, pressure-dependent Raman studies first establish the pressure coefficients of phonon and CDW amplitude modes for a variety of RTe 3 materials, including LaTe 3 , CeTe 3 , PrTe 3 , NdTe 3 , SmTe 3 , GdTe 3 , and TbTe 3 . Results further show that the CDW phase is eventually suppressed at high pressures when the interlayer spacing is reduced and interaction strength is increased. Comparison between different RTe 3 materials shows that LaTe 3 with the largest thermodynamic equilibrium interlayer spacing (smallest chemical pressure) exhibits the most stable CDW phases at high pressures. In contrast, CDW phases in late RTe 3 systems with the largest internal chemical pressures are suppressed easily with applied pressure. Overall results provide comprehensive insights into the CDW response of the entire RTe 3 series under extreme pressures, offering an understanding of CDW formation/engineering in a unique class of vdW RTe 3 material systems.more » « less
-
Abstract Using high‐resolution transmission electron microscopy and electron energy‐loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet‐chemistry approach. These liquid cells can feature van‐der‐Waals pressures up to 1 GPa, producing a miniaturized high‐pressure container for the crystallization in solution. The thickness of as‐received crystals is beyond the thermodynamic ultra‐thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near‐free‐standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous‐solution approaches of more metal‐oxide semiconductors with exotic phase structures and properties in graphene‐encapsulated confined cells.