skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Student Experiences of an Intentionally Embedded Computer Science and Cybersecurity Pathway in U.S. High Schools
Research Problem: K-12 school systems are racing to implement Computer Science (CS) education within classrooms across the United States. Prior research on education reform movements suggests that without rigorous research, combined with careful technical support for implementation, we should expect wide variation across districts in how they choose to implement computer science education as well as extreme inequality in which districts provide equitable opportunities to learn CS, with the most underserved students fairing the worst (Ahn & Quarles, 2016; Bryk, Gomez, Grunow, & LeMahieu, 2015; Carlson, Borman, & Robinson, 2011; Gordon and Heck, 2019). It stands to reason that these same challenges are at play in the CS subfield of cybersecurity. Research Question: In what ways does the JROTC-CS experience impact the cognitive (e.g. knowledge and skills) and non-cognitive factors (e.g. social and emotional behaviors) of cadets in high school? Methodology: We used a qualitative study using a semi-structured interview protocol with JROTC cadets attending the schools involved in the intervention (n=17). The interview protocol focused on the types of cognitive and non-cognitive impacts the cadets experienced when participating in CS and Cybersecurity learning experiences. Data Collection: We conducted interviews with 17 cadets and coded the transcripts using a priori codes. Findings: Sixteen of the students reported an increase in their knowledge and skills through self-reported grades and self-perceived knowledge gained through the CS and cybersecurity experiences. While all of the students indicated that the courses and extracurricular activities were beneficial and interesting, only two of the students indicated they wanted to have a career in the computer science or cybersecurity field. However, the findings indicated a lack of school personnel support, specifically at the guidance counselor level. Finally, all of the students reported a strong sense of belonging in their CS and cybersecurity experiences leading to increased peer collaboration and support. Implications: Based on other evidence collected during the intervention, the intervention had multiple successes in expanding equitable experiences for cadets in the schools involved in the study. Guidance counselors and other personnel who are in a position to influence the future career choices of cadets may need more professional development; however, more research is needed to understand the ways in which they currently influence cadets.  more » « less
Award ID(s):
2028426
PAR ID:
10560744
Author(s) / Creator(s):
;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Baltimore , Maryland
Sponsoring Org:
National Science Foundation
More Like this
  1. In early 2020, a cohort of 30 high schools engaged in a year-long intervention designed to increase their ability to offer Computer Science (CS) and Cybersecurity education to their students. After we performed an evaluation on the intervention’s impacts, we turned our attention to whether or not the outcomes were influenced by engagement of the schools in the cohort. In this research paper, we focus on the guiding research question: How do schools’ engagement in an intervention designed to build equitable CS and Cybersecurity education capacity impact schools’ course offerings and students’ participation in these courses? To measure equitable impact, we evaluated changes to actual CS and Cybersecurity course offerings and enrollment at the schools. We focused on the differences in participation across student gender and race/ethnicity as well as participation levels at the different schools across three years prior to the intervention and one year after the intervention. Findings indicate that, despite the disruption to schools from the COVID-19 pandemic, schools engaged in the program had very significant increases in AP CSP, AP CS A, and Cybersecurity course offerings and enrollment, particularly at schools that serve students from low-income families. 
    more » « less
  2. With more recognition being given to the diverse and changing demographics in education, there is a need to understand how well computer science education is meeting the needs of all learners as it starts to infiltrate K-12 schools. The CAPE framework is a newer model for assessing the equitable delivery of computer science education and can be used to understand a school’s capacity to offer equitable computer science (CS) education, equitable student access to CS education, equitable student participation in CS, and equitable experiences of students taking CS. Since the CAPE framework is a new way to research CS education through an equity-lens, there are few, if any, frameworks that can be leveraged to explore research questions in a complex, multi-school intervention. To address this gap, we used a design-based research approach to create and determine the feasibility of a new model, Theory of Impacts, informed by the CAPE framework (the ToI-CAPE model), for evaluating a multi-school intervention. In this article, we provide a detailed explanation of creating and using the ToI-CAPE model for a specific intervention and the feasibility of using ToI-CAPE across factors based in experiences and how to use this model in other research and evaluation projects. Overall, the use of the ToI-CAPE model can be used to shed light on the critical subcomponents and agents at work in the intervention and the actions necessary across these components and agents to support intended outcomes. 
    more » « less
  3. The Exploring Computer Science (ECS) curriculum provides foundational knowledge of Computer Science (CS) to high school students as a stand-alone course. ECS began in the Los Angeles Unified School District in the late 2000s where it gained eminence for broadening participation in computing (BPC), with Latinx students representing over 70% of enrollment. This experience report describes a partnership that consists of three Universities, dozens of school districts, the ECS team, and other stakeholders to bring the ECS curriculum in mainly rural school districts in Alabama that have a majority African-American student population. Sixty in-service teachers (one teacher per school) have received professional learning opportunities to gain knowledge and skills to teach ECS. Signs of early broader impacts are emerging: 78% of our ECS enrollment are underrepresented minority (URM) students with nearly half of the cohort consisting of female students. Students reported they were engaged in working collaboratively and sharing responsibilities with others. Furthermore, students who reported being more involved in the ECS course had deeper confidence in their ability to succeed in CS, reported greater overall outcomes, had more confidence in development of 21st century skills, found the course more relevant, were more motivated to persist in CS, and exhibited increased interest in CS careers. We provide a comprehensive description of the partnership’s accomplishments and the evaluation findings on student CS experiences and on teacher self-efficacy in ECS preparation and instruction. Our findings contribute to the BPC literature, specifically for schools with predominantly African-American enrollment in rural communities. 
    more » « less
  4. With a rise in technology, the demand for computer science (CS) education is increasing in K-12 schools, yet access is inequitable. This research brings together teachers and students participating in a secondary school CS program in the Milwaukee Public School District through an initiative to ensure all students have access to equitable, meaningful, rigorous, and relevant inquiry-based CS education. Utilizing a qualitative approach and grounded theory, this study investigated student-teacher relationships in computer science program participation and what factors from these relationships contribute to marginalized students continuing in an early Science, Technology, Engineering, and Mathematics (STEM) K-12 pathway. Findings suggest teachers served a dynamic role as agents of professional orientation central to how students a) experienced CS learning and b) how students perceived the field they were attempting to enter (development of a CS identity). Moreover, these teachers oriented students into an industry with a history of marginalization. 
    more » « less
  5. The demand to provide high-quality computer science (CS) education to K-12 students across the United States continues to grow due to societal transformations driven by AI and cybersecurity. However, the impact of state initiatives and mandates on district leaders’ decision making remains an under-explored area in the literature. In 2022, CSforALL began work in Tennessee, a state poised to enact CS education policy, as part of a Research Practice Partnership (RPP). This study investigates the first eight school districts who participated in the Strategic CSforALL Resource and Implementation Planning Tool (SCRIPT) workshops in 2022 and 2023, setting goals based on the SCRIPT rubric. The study takes a general qualitative approach underpinned by the Capacity, Access, Participation, and Experience (CAPE) Framework [14] to develop a coding scheme analyzing the districts’ related rubric scores and goals, and to investigate the impacts on equity indicators. The districts participated in three SCRIPT workshops held in 2022 and 2023, and this study dives deeply into the initial goals as well as analyzing the ways the SCRIPT rubric aligned to the CAPE Framework to investigate how district leaders make decisions which impact teacher and student outcomes which lead to equitable high-quality CS education. 
    more » « less