Data availability pending. The Arctic is warming faster than any other place on Earth, with sea ice declining rapidly and sources of sea spray and biogenic aerosol emissions changing by consequence. Utqiagvik is at the forefront of this change, abutting one of the largest areas of sea ice loss. This change will have far-reaching impacts to both the environment and the community. Because this change has happened largely in the last decade, now is an important time to both document that change and to continue a data record that will allow for a characterization of the New Arctic, as climate is already altering the Arctic landscape forever. The longest and most complete record of aerosol properties in the American Arctic is that of Utqiagvik, making this unique location serve as a regional record of changes in atmospheric aerosol properties. This dataset will extend the baseline measurements of this Arctic aerosol record, including and continuing the 15-year record of submicron inorganic components (Quinn et al., 2009; Quinn et al., 2002), re-instituting the 2-year record of organic components collected a decade ago (Frossard et al., 2011; Shaw et al., 2010), enhancing the chemical analysis with sulfur isotopes to improve interpretation of emission sources (Kunasek et al., 2010; Thiemens & Lin, 2019), continuing particle number size distribution measurements (Freud et al., 2017), and re-starting cloud condensation nuclei measurements (Schmale, Henning, et al., 2018).
more »
« less
Swanson-Hysell/Snowball_bifurcation_EBM: Elements article publication
Release associated with 10.2138/gselements.19.5.296 publication. This repository hosts a notebook that implements the 0-D energy balance model of Pierrehumbert et al. (2011). It utilizes the Python script published by Pierrehumbert et al. (2011) which itself uses the ClimateUtilities modules. A run of the model with slightly modified variables is visualized in a simplified plot of just the upper and lower limb without showing the unstable branches. In addition, CO_2 decrease scenarios are shown (2 CO_2 halvings) starting at different initial global mean temperatures. These scenarios illustrate that the effect of a decrease in CO_2 (say driven by changing paleogeographic boundary conditions) on Earth's climate state will be quite different depending on the initial starting condition.
more »
« less
- Award ID(s):
- 1925990
- PAR ID:
- 10560796
- Publisher / Repository:
- Zenodo
- Date Published:
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT:We study the influence of an upper-plate fault on the stress state of accreting sediments under large-scale deformation. We develop drained evolutionary geomechanical models using the Finite Element program Elfen. We simulate sediments as porous-elastoplastic material, and we model the fault as a pre-existing contact surface with a varying frictional strength that is lower than the intact sediment. The weaker fault results in a decrease in sediment differential stress near and especially seaward of the fault. A significant section of the wedge is affected by this stress variation. In contrast, the stress ratio is that of Coulomb failure further away from the fault. We also show that the maximum principal stress the sediments can support decreases with decreasing fault strength. This study offers a significant improvement over previous models of continuum wedge sediments that predict Coulomb failure throughout the wedge. Our results improve our understanding of near-fault stress state, hence improving our understanding of seismic hazards in subduction zones and providing practical insights for reservoir quality and the design of safe and economic well trajectories. 1 INTRODUCTIONAccretionary wedges are geological structures that develop at convergent plate boundaries, particularly at subduction zones. They form as a result of offscraping sediments from the subducting oceanic plate, which then accumulates on the leading edge of the overriding plate (e.g., Moore et al., 2011; Buiter et al., 2016; Gao et al., 2018).Understanding the state of stress in accretionary wedges is crucial for the study of earthquake mechanics in subduction zones (e.g., Brodsky et al., 2017; Huffman and Saffer, 2016; Suppe, 2007). It provides insights for earthquake occurrence, large or slow-slip events (e.g., Kodaira et al., 2012; Tobin et al., 2022; Liu and Rice, 2007) and tsunami potential (e.g., Dean et al., 2010; Riedel et al., 2016). In addition, estimates of mean and differential stress, as well as porosity evolution can help improve the assessment of reservoir quality and the design of safe and economic well trajectories (e.g., Morley et al., 2011).The accumulation of sediments in an accretionary wedge resembles a bulldozer gathering snow as it moves. Hence, wedge sediments are often assumed to be at compressional failure (e.g., Davis et al., 1983; Dahlen et al., 1984; Flemings and Saffer, 2018). Several field observations of faulting, folding and lateral compression as seen in seismic images and drilling measurements (e.g., Flemings and Saffer, 2018; Henry et al., 2003; Moore et al., 1990; Westbrook et al., 1988) provide evidence that the accretionary wedge is at a state of failure in compression.more » « less
-
### Access Dataset and extensive metadata can be accessed and downloaded from the 'ADC' directory via: [http://arcticdata.io/data/10.18739/A2X05XF2D](http://arcticdata.io/data/10.18739/A2X05XF2D) ### Overview The Arctic is warming faster than any other place on Earth, with sea ice declining rapidly and sources of sea spray and biogenic aerosol emissions changing by consequence. Utqiagvik is at the forefront of this change, abutting one of the largest areas of sea ice loss. This change will have far-reaching impacts to both the environment and the community. Because this change has happened largely in the last decade, now is an important time to both document that change and to continue a data record that will allow for a characterization of the New Arctic, as climate is already altering the Arctic landscape forever. The longest and most complete record of aerosol properties in the American Arctic is that of Utqiagvik, making this unique location serve as a regional record of changes in atmospheric aerosol properties. This dataset will extend the baseline measurements of this Arctic aerosol record, including and continuing the 15-year record of submicron inorganic components (Quinn et al., 2009; Quinn et al., 2002), re-instituting the 2-year record of organic components collected a decade ago (Frossard et al., 2011; Shaw et al., 2010), enhancing the chemical analysis with sulfur isotopes to improve interpretation of emission sources (Kunasek et al., 2010; Thiemens & Lin, 2019), continuing particle number size distribution measurements (Freud et al., 2017), and re-starting cloud condensation nuclei measurements (Schmale, Henning, et al., 2018).more » « less
-
### Access Dataset can be accessed and downloaded from the 'ADC' directory via: [http://arcticdata.io/data/10.18739/A2X63B701](http://arcticdata.io/data/10.18739/A2X63B701) ### Overview The Arctic is warming faster than any other place on Earth, with sea ice declining rapidly and sources of sea spray and biogenic aerosol emissions changing by consequence. Utqiagvik is at the forefront of this change, abutting one of the largest areas of sea ice loss. This change will have far-reaching impacts to both the environment and the community. Because this change has happened largely in the last decade, now is an important time to both document that change and to continue a data record that will allow for a characterization of the New Arctic, as climate is already altering the Arctic landscape forever. The longest and most complete record of aerosol properties in the American Arctic is that of Utqiagvik, making this unique location serve as a regional record of changes in atmospheric aerosol properties. This dataset will extend the baseline measurements of this Arctic aerosol record, including and continuing the 15-year record of submicron inorganic components (Quinn et al., 2009; Quinn et al., 2002), re-instituting the 2-year record of organic components collected a decade ago (Frossard et al., 2011; Shaw et al., 2010), enhancing the chemical analysis with sulfur isotopes to improve interpretation of emission sources (Kunasek et al., 2010; Thiemens & Lin, 2019), continuing particle number size distribution measurements (Freud et al., 2017), and re-starting cloud condensation nuclei measurements (Schmale, Henning, et al., 2018).more » « less
-
We prove the uniqueness of the Ginzburg–Rallis models over p-adic local fields of characteristic zero, which completes the local uniqueness problem for the Ginzburg–Rallis models, starting from the work of Nien (Models of representations of general linear groups over p-adic fields, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)-University of Minnesota, 2006) that proves the non-split case, and the work of Jiang et al. (Trans Am Math Soc 363(5): 2763–2802, 2011) that proves the general case over Archimedean local fields. Our proof extends the strategy of [16] to the p-adic case with the help of the refined structure of the wavefront sets of z-finite distributions as developed by Aizenbud et al. (Adv Math 285:1376–1414,2015).more » « less
An official website of the United States government
