skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 18, 2025

Title: Spreading and leveling of finite thin films with elastic interfaces: An eigenfunction expansion approach
The flow of a thin viscous liquid layer under an elastic film arises in natural processes, such as magmatic intrusions between rock strata, and industrial applications, such as coating surfaces with cured polymeric films. We study the linear dynamics of small perturbations to the equilibrium state of the film in a closed trough (finite film). Specifically, we are interested in the spreading (early-time) and leveling (late-time) dynamics as the film adjusts to equilibrium, starting from different initial perturbations. We consider both smooth and non-smooth spatially symmetric and localized initial conditions (perturbations). We find the exact series solutions for the film height, using the sixth-order complete orthonormal eigenfunctions associated with the posed initial-boundary-value problem derived in our previous work [Papanicolaou N C and Christov I C 2023J. Phys.: Conf. Ser.2675012016]. We show that the evolution of the perturbations begins with the spreading of the localized perturbations, followed by their mutual interaction as they spread, and finally, interactions with the confining lateral boundaries of the domain as the perturbations level. In particular, we highlight how the leading eigenvalues of the problem determine the scalings of certain figures of merit with time.  more » « less
Award ID(s):
2029540
PAR ID:
10560993
Author(s) / Creator(s):
;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Physics: Conference Series
Volume:
2910
Issue:
1
ISSN:
1742-6588
Page Range / eLocation ID:
012032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A long-standing fundamental open problem in mathematical fluid dynamics and nonlinear partial differential equations is to determine whether solutions of the 3D incompressible Euler equations can develop a finite-time singularity from smooth, finite-energy initial data. Leonhard Euler introduced these equations in 1757 [L. Euler,Mémoires de l’Académie des Sci. de Berlin11, 274–315 (1757).], and they are closely linked to the Navier–Stokes equations and turbulence. While the general singularity formation problem remains unresolved, we review a recent computer-assisted proof of finite-time, nearly self-similar blowup for the 2D Boussinesq and 3D axisymmetric Euler equations in a smooth bounded domain with smooth initial data. The proof introduces a framework for (nearly) self-similar blowup, demonstrating the nonlinear stability of an approximate self-similar profile constructed numerically via the dynamical rescaling formulation. 
    more » « less
  2. We prove asymptotic stability of the Poisson homogeneous equilibrium among solu- tions of the Vlasov–Poisson system in the Euclidean space R3. More precisely, we show that small, smooth, and localized perturbations of the Poisson equilibrium lead to global solutions of the Vlasov–Poisson system, which scatter to linear solutions at a polynomial rate as t → ∞. The Euclidean problem we consider here differs signif- icantly from the classical work on Landau damping in the periodic setting, in several ways. Most importantly, the linearized problem cannot satisfy a “Penrose condition”. As a result, our system contains resonances (small divisors) and the electric field is a superposition of an electrostatic component and a larger oscillatory component, both with polynomially decaying rates. 
    more » « less
  3. Abstract Motivated by the challenge of sampling Gibbs measures with nonconvex potentials, we study a continuum birth–death dynamics. We improve results in previous works (Liuet al2023Appl. Math. Optim.8748; Luet al2019 arXiv:1905.09863) and provide weaker hypotheses under which the probability density of the birth–death governed by Kullback–Leibler divergence or byχ2divergence converge exponentially fast to the Gibbs equilibrium measure, with a universal rate that is independent of the potential barrier. To build a practical numerical sampler based on the pure birth–death dynamics, we consider an interacting particle system, which is inspired by the gradient flow structure and the classical Fokker–Planck equation and relies on kernel-based approximations of the measure. Using the technique of Γ-convergence of gradient flows, we show that on the torus, smooth and bounded positive solutions of the kernelised dynamics converge on finite time intervals, to the pure birth–death dynamics as the kernel bandwidth shrinks to zero. Moreover we provide quantitative estimates on the bias of minimisers of the energy corresponding to the kernelised dynamics. Finally we prove the long-time asymptotic results on the convergence of the asymptotic states of the kernelised dynamics towards the Gibbs measure. 
    more » « less
  4. We consider equations of Müller-Israel-Stewart type describing a relativistic viscous fluid with bulk viscosity in four-dimensional Minkowski space. We show that there exists a class of smooth initial data that are localized perturbations of constant states for which the corresponding unique solutions to the Cauchy problem break down in finite time. Specifically, we prove that in finite time such solutions develop a singularity or become unphysical in a sense that we make precise. We also show that in general Riemann invariants do not exist in 1+1 dimensions for physically relevant equations of state and viscosity coefficients. Finally, we present a more general version of a result by Y. Guo and A.S. Tahvildar-Zadeh: we prove large-data singularity formation results for perfect fluids under very general assumptions on the equation of state, allowing any value for the fluid sound speed strictly less than the speed of light. 
    more » « less
  5. Abstract We study the singularity formation of a quasi-exact 1D model proposed by Hou and Li (2008Commun. Pure Appl. Math.61661–97). This model is based on an approximation of the axisymmetric Navier–Stokes equations in therdirection. The solution of the 1D model can be used to construct an exact solution of the original 3D Euler and Navier–Stokes equations if the initial angular velocity, angular vorticity, and angular stream function are linear inr. This model shares many intrinsic properties similar to those of the 3D Euler and Navier–Stokes equations. It captures the competition between advection and vortex stretching as in the 1D De Gregorio (De Gregorio 1990J. Stat. Phys.591251–63; De Gregorio 1996Math. Methods Appl. Sci.191233–55) model. We show that the inviscid model with weakened advection and smooth initial data or the original 1D model with Hölder continuous data develops a self-similar blowup. We also show that the viscous model with weakened advection and smooth initial data develops a finite time blowup. To obtain sharp estimates for the nonlocal terms, we perform an exact computation for the low-frequency Fourier modes and extract damping in leading order estimates for the high-frequency modes using singularly weighted norms in the energy estimates. The analysis for the viscous case is more subtle since the viscous terms produce some instability if we just use singular weights. We establish the blowup analysis for the viscous model by carefully designing an energy norm that combines a singularly weighted energy norm and a sum of high-order Sobolev norms. 
    more » « less