skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Three-Dimensional Printing of Biomass–Fungi Biocomposite Materials: The Effects of Mixing and Printing Parameters on Fungal Growth
Biomass–fungi biocomposite materials are derived from sustainable sources and can biodegrade at the end of their service. They can be used to manufacture products that are traditionally made from petroleum-based plastics. There are potential applications for these products in the packaging, furniture, and construction industries. In the biomass–fungi biocomposite materials, the biomass particles (made from agricultural waste such as hemp hurd) act as the substrate, and a network of fungal hyphae grow through and bind the biomass particles together. Typically, molding-based methods are used to manufacture products using these biocomposite materials. Recently, the authors reported a novel extrusion-based 3D printing method using these biocomposite materials. This paper reports a follow-up investigation into the effects of mixing parameters (mixing time and mixing mode) on fungal growth in biomass–fungi mixtures prepared for 3D printing and the effects of printing parameters (printing speed and extrusion pressure) on fungal growth in printed samples. The fungal growth was quantified using the number of fungal colonies that grew from samples. The results show that, when mixing time increased from 15 to 120 s, there was a 52% increase in fungal growth. Changing from continuous to intermittent mixing mode resulted in an 11% increase in fungal growth. Compared to mixtures that were not subjected to printing, samples printed with a high printing speed and high extrusion pressure had a 14.6% reduction in fungal growth, while those with a low printing speed and low extrusion pressure resulted in a 16.5% reduction in fungal growth.  more » « less
Award ID(s):
2308575
PAR ID:
10561327
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Journal of Manufacturing and Materials Processing
Volume:
8
Issue:
1
ISSN:
2504-4494
Page Range / eLocation ID:
2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To combat climate change, one approach is to manufacture products from biomass-fungi composite materials instead of petroleum-based plastics. These products can be used in packaging, furniture, and construction industries. A 3D printing-based manufacturing method was developed for these biomass-fungi composite materials, eliminating the need for molds, and enabling customized product design. However, previous studies on the 3D printing-based method showed significant shrinkage of printed samples. In this paper, an approach is proposed to reduce the shrinkage by incorporating ionic crosslinking into biomass-fungi composite materials. This paper reports two sets of experiments regarding the effects of sodium alginate (SA) and calcium chloride (CaCl2) on fungal growth and fungal viability. The first set of experiments was conducted using Petri dishes with fungi isolated from colonized biomass-fungi material and different concentrations of SA and CaCl2. Fungal growth was measured by the circumference of fungal colonies. The results showed that concentrations of SA and CaCl2 had significant effects on fungal growth and no fungal growth was observed on Petri dishes with 15% CaCl2. Some of these Petri dishes were also observed under confocal microscopy. The results confirmed the differences obtained by measuring the circumference of fungal colonies. The second set of experiments was conducted using Petri dishes with biomass-fungi mixtures that were treated with different concentrations of SA and exposure times in a CaCl2 (crosslinking) solution. Fungal viability was measured by counting colony-forming units. The results showed that the addition of the SA solution and exposure times in the crosslinking solution had statistically significant effects on fungal viability. The 2SA solution was prepared by dissolving 2 g of SA in 100 mL of water, the 5SA solution was prepared by dissolving 5 g of SA in 100 mL of water, and the crosslinking solution was prepared by dissolving 5 g of CaCl2 in 100 mL of water. The results also showed that fungal viability was not too low in biomass-fungi mixtures that included 2SA solution and were exposed to the crosslinking solution for 1 min. 
    more » « less
  2. Products made from petroleum-derived plastic materials are linked to many environmental problems, such as greenhouse gas emissions and plastic pollution. It is desirable to manufacture products from environmentally friendly materials instead of petroleum-based plastic materials. Products made from biomass–fungi composite materials are biodegradable and can be utilized for packaging, construction, and furniture. In biomass–fungi composite materials, biomass particles (derived from agricultural wastes) serve as the substrate, and the fungal hyphae network binds the biomass particles together. There are many reported studies on the 3D printing of biomass–fungi composite materials. However, there are no reported studies on the biodegradation of 3D-printed samples from biomass–fungi composite materials. In this study, two types of biomass materials were used to prepare printable mixture hemp hurd and beechwood sawdust. The fungi strain used was Trametes versicolor. Extrusion based 3D printing was used to print samples. 3D-printed samples were left for five days to allow fungi to grow. The samples were then dried in an oven for 4 h at 120 °C to kill all the fungi in the samples. The samples were buried in the soil using a mesh bag and kept in an environmental chamber at 25 °C with a relative humidity of 48%. The weight of these samples was measured every week over a period of three months. During the testing period, the hemp hurd test samples lost about 33% of their original weight, whereas the beechwood sawdust samples lost about 30% of their original weight. The SEM (scanning electron microscope) micrographs showed the presence of zygospores in the test samples, providing evidence of biodegradation of the test samples in the soils. Additionally, the difference in peak intensity between the control samples and test samples (for both hemp hurd and beechwood sawdust) showed additional evidence of biodegradation of the test samples in the soils. 
    more » « less
  3. Biomass–fungi composite materials primarily consist of biomass particles (sourced from agricultural residues) and a network of fungal hyphae that bind the biomass particles together. These materials have potential applications across diverse industries, such as packaging, furniture, and construction. 3D printing offers a new approach to manufacturing parts using biomass–fungi composite materials, as an alternative to traditional molding-based methods. However, there are challenges in producing parts with desired quality (for example, geometric accuracy after printing and height shrinkage several days after printing) by using 3D printing-based methods. This paper introduces an innovative approach to enhance part quality by incorporating ionic crosslinking into the 3D printing-based methods. While ionic crosslinking has been explored in hydrogel-based bioprinting, its application in biomass–fungi composite materials has not been reported. Using sodium alginate (SA) as the hydrogel and calcium chloride as the crosslinking agent, this paper investigates their effects on quality (geometric accuracy and height shrinkage) of 3D printed samples and physiochemical characteristics (rheological, chemical, and texture properties) of biomass–fungi composite materials. Results show that increasing SA concentration led to significant improvements in both geometric accuracy and height shrinkage of 3D printed samples. Moreover, crosslinking exposure significantly enhanced hardness of the biomass–fungi mixture samples prepared for texture profile analysis, while the inclusion of SA notably improved cohesiveness and springiness of the biomass–fungi mixture samples. Furthermore, Fourier transform infrared spectroscopy confirms the occurrence of ionic crosslinking within 3D printed samples. Results from this study can be used as a reference for developing new biomass–fungi mixtures for 3D printing in the future. 
    more » « less
  4. The emergence of bio-additive manufacturing marks a crucial advancement in the field of biomedical engineering. For successful biomedical applications including bioprinted organ transplants, ensuring the quality of printed structures poses a significant challenge. Among the major challenges encountered in ensuring the structural integrity of bioprinting, nozzle clogging stands out as one of the frequent concerns in the process. It disrupts the uniform distribution of extrusion pressure, leading to the formation of defective structures. This study focused on detecting defects arising from the irregularities in extrusion pressure. To address this concern, a video-based motion estimation technique, which emerged as a novel non-contact and non-destructive technique for assessing bio 3D printed structures, is employed in this research. While other advancements, including contact-based and laser-based approaches, may offer limited performance due to the soft, lightweight, and translucent nature of bioconstructs. In this study, defective and non-defective ear models are additively manufactured by an extrusion-based bioprinter with pneumatic dispensing. Extrusion pressure was strategically controlled to introduce defective bioprints similar to those caused by nozzle malfunctions. The vibration characteristics of the ear structures are captured by a high-speed camera and analyzed using phase-based motion estimation approaches. In addition to ambient excitations from the printing process, acoustic excitations from a subwoofer are employed to assess its impact on print quality. The increase in extrusion pressure, simulating clogged nozzle issues, resulted in significant changes in the vibration characteristics, including shifts in the resonance frequencies. By monitoring these modal property changes, defective bioconstructs could be reliably determined. These findings suggest that the proposed approach could effectively verify the structural integrity of additively manufactured bioconstructs. Implementing this method along with the real time defect detection technique will significantly enhance the structural integrity of additively manufactured bioconstructs and ultimately improve the production of healthy artificial organs, potentially saving countless lives. 
    more » « less
  5. null (Ed.)
    3D printing is an essential tool for rapid prototyping in a variety of sectors such as automotive and public health. The 3D printing market is booming, and it is projected that it will continue to thrive in the coming years. Unfortunately, this rapid growth has led to an alarming increase in the amount of 3D printed plastic waste. 3D printing processes such as stereolithography (SLA) and digital light projection (DLP) in particular generally produce petroleum-based thermosets that are further worsening the plastic pollution problem. To mitigate this 3D printed plastic waste, sustainable alternatives to current 3D printing materials must be developed. The present review provides a comprehensive overview of the sustainable advances in SLA/DLP 3D printing to date and offers a perspective on future directions to improve sustainability in this field. The entire life cycle of 3D printed parts has been assessed by considering the feedstock selection and the end-of-use of the material. The feedstock selection section details how renewable feedstocks (from lignocellulosic biomass, oils, and animal products) or waste feedstocks ( e.g. , waste cooking oil) have been used to develop SLA/DLP resins. The end-of-use section describes how materials can be reprocessed ( e.g. thermoplastic materials or covalent adaptable networks) or degraded (through enzymatic or acid/base hydrolysis of sensitive linkages) after end-of-use. In addition, studies that have employed green chemistry principles in their resin synthesis and/or have shown their sustainable 3D printed parts to have mechanical properties comparable to commercial materials have been highlighted. This review also investigates how aspects of sustainability such as recycling for feedstock/end-of-use or biodegradation of 3D printed parts in natural environments can be incorporated as future research directions in SLA/DLP. 
    more » « less