skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data from: Plasticity in hydraulic architecture: Riparian trees respond to increased temperatures with genotype-specific adjustments to leaf traits
Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems. We investigated two components of leaf hydraulic architecture: leaf venation and stomatal morphology, both of which regulate leaf water potential and photosynthesis. These traits will likely affect plant performance under climate stressors, but it is unclear whether they are controlled by genetic or environmental factors, and whether they respond to the environment in parallel or independent directions. We found that: 1) Populations had divergent responses to a hotter growing environment, increasing or decreasing vein density. 2) Populations showed surprisingly independent responses of venation vs. stomatal traits. 3) As a result of these different responses, plasticity in hydraulic architecture traits was not predictable from historic climate conditions at population source locations, and often varied substantially within populations. 4) Hydraulic architecture was clearly linked to growth, with higher vein and stomatal density predicting greater tree growth in the hottest growing environment. However, higher plasticity in these traits did not increase average growth across multiple environments. Thus, P. fremontii populations and genotypes vary in their capacity to adjust their leaf hydraulic architecture and support growth in contrasting environments, but that this plasticity is not clearly predictable or beneficial. Identifying genotypes suitable for future conditions will depend on the relative importance of multiple traits, and on both evolutionary and ecological responses to changing temperature and water availability.  more » « less
Award ID(s):
1914433
PAR ID:
10561369
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Dryad
Date Published:
Subject(s) / Keyword(s):
FOS: Biological sciences FOS: Biological sciences phenotypic plasticity Populus fremontii Leaf veins Stomata
Format(s):
Medium: X Size: 43292 bytes
Size(s):
43292 bytes
Right(s):
Creative Commons Zero v1.0 Universal
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Climate means and variability are shifting rapidly, leading to mismatches between climate and locally adapted plant traits. Phenotypic plasticity, the ability of a plant to respond to environmental conditions within a lifetime, may provide a buffer for plants to persist under increasing temperature and water stress. We used two reciprocal common gardens across a steep temperature gradient to investigate plasticity in six populations of Fremont cottonwood, an important foundation tree species in arid riparian ecosystems. We investigated two components of leaf hydraulic architecture: Leaf venation and stomatal morphology, both of which regulate leaf water potential and photosynthesis. These traits will likely affect plant performance under climate stressors, but it is unclear whether they are controlled by genetic or environmental factors and whether they respond to the environment in parallel or independent directions. We found that: (1) Populations had divergent responses to a hotter growing environment, increasing or decreasing vein density. (2) Populations showed surprisingly independent responses of venation vs. stomatal traits. (3) As a result of these different responses, plasticity in hydraulic architecture traits was not predictable from historic climate conditions at population source locations and often varied substantially within populations. (4) Hydraulic architecture was clearly linked to growth, with higher vein and stomatal density predicting greater tree growth in the hottest growing environment. However, higher plasticity in these traits did not increase average growth across multiple environments. Thus,P. fremontiipopulations and genotypes vary in their capacity to adjust their leaf hydraulic architecture and support growth in contrasting environments, but this plasticity is not clearly predictable or beneficial. Identifying genotypes suitable for future conditions will depend on the relative importance of multiple traits and on both evolutionary and ecological responses to changing temperature and water availability. 
    more » « less
  2. Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern US, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12oC temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world. 
    more » « less
  3. Abstract Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world. 
    more » « less
  4. Abstract Background and Aims The success of invasive plants can be attributed to many traits including the ability to adapt to variable environmental conditions. Whether by adaptation, acclimation or phenotypic plasticity, these plants often increase their resource-use efficiency and, consequently, their fitness. The goal of this study was to examine the hydraulic and eco-physiological attributes of sun and shade populations of Pteridium aquilinum, a weedy fern, to determine whether the presence of vessels and other hydraulic attributes affects its success under a variety of light conditions. Methods Hydraulic traits such as cavitation resistance, hydraulic conductivity, photosynthesis and water potential at turgor loss point were measured on fronds from sun and shade populations. Anatomical and structural traits such as conduit diameter and length, stomatal density and vein density were also recorded. Diurnal measures of leaf water potential and stomatal conductance complement these data. Key Results Gas exchange was nearly double in the sun plants, as was water-use efficiency, leaf-specific conductivity, and stomatal and vein density. This was largely achieved by a decrease in leaf area, coupled with higher xylem content. There was no significant difference in petiole cavitation resistance between the sun and shade leaves, nor in xylem-specific conductivity. Hydraulic conduit diameters were nearly equivalent in the two leaf types. Conclusions Shifts in leaf area and xylem content allow P. aquilinum to occupy habitats with full sun, and to adjust its physiology accordingly. High rates of photosynthesis explain in part the success of this fern in disturbed habitats, although no change was observed in intrinsic xylem qualities such as cavitation resistance or conduit length. This suggests that P. aquilinum is constrained by its fundamental body plan, in contrast to seed plants, which show greater capacity for hydraulic adjustment. 
    more » « less
  5. Abstract The dataset contains leaf venation architecture and functional traits for a phylogenetically diverse set of 122 plant species (including ferns, basal angiosperms, monocots, basal eudicots, asterids, and rosids) collected from the living collections of the University of California Botanical Garden at Berkeley (37.87° N, 122.23° W; CA, USA) from February to September 2021. The sampled species originated from all continents, except Antarctica, and are distributed in different growth forms (aquatic, herb, climbing, tree, shrub). The functional dataset comprises 31 traits (mechanical, hydraulic, anatomical, physiological, economical, and chemical) and describes six main leaf functional axes (hydraulic conductance, resistance and resilience to damages caused by drought and herbivory, mechanical support, and construction cost). It also describes how architecture features vary across venation networks. Our trait dataset is suitable for (1) functional and architectural characterization of plant species; (2) identification of venation architecture‐function trade‐offs; (3) investigation of evolutionary trends in leaf venation networks; and (4) mechanistic modeling of leaf function. Data are made available under the Open Data Commons Attribution License. 
    more » « less