The main challenge in learning image-conditioned robotic policies is acquiring a visual representation conducive to low-level control. Due to the high dimensionality of the image space, learning a good visual representation requires a considerable amount of visual data. However, when learning in the real world, data is expensive. Sim2Real is a promising paradigm for overcoming data scarcity in the real-world target domain by using a simulator to collect large amounts of cheap data closely related to the target task. However, it is difficult to transfer an image-conditioned policy from sim to real when the domains are very visually dissimilar. To bridge the sim2real visual gap, we propose using natural language descriptions of images as a unifying signal across domains that captures the underlying task-relevant semantics. Our key insight is that if two image observations from different domains are labeled with similar language, the policy should predict similar action distributions for both images. We demonstrate that training the image encoder to predict the language description or the distance between descriptions of a sim or real image serves as a useful, data-efficient pretraining step that helps learn a domain-invariant image representation. We can then use this image encoder as the backbone of an IL policy trained simultaneously on a large amount of simulated and a handful of real demonstrations. Our approach outperforms widely used prior sim2real methods and strong vision-language pretraining baselines like CLIP and R3M by 25 to 40 percent. See additional videos and materials at our project website.
more »
« less
This content will become publicly available on September 1, 2025
Sim2Real in reconstructive spectroscopy: Deep learning with augmented device-informed data simulation
This work proposes a deep learning (DL)-based framework, namely Sim2Real, for spectral signal reconstruction in reconstructive spectroscopy, focusing on efficient data sampling and fast inference time. The work focuses on the challenge of reconstructing real-world spectral signals in an extreme setting where only device-informed simulated data are available for training. Such device-informed simulated data are much easier to collect than real-world data but exhibit large distribution shifts from their real-world counterparts. To leverage such simulated data effectively, a hierarchical data augmentation strategy is introduced to mitigate the adverse effects of this domain shift, and a corresponding neural network for the spectral signal reconstruction with our augmented data is designed. Experiments using a real dataset measured from our spectrometer device demonstrate that Sim2Real achieves significant speed-up during the inference while attaining on-par performance with the state-of-the-art optimization-based methods.
more »
« less
- PAR ID:
- 10561421
- Publisher / Repository:
- AIP
- Date Published:
- Journal Name:
- APL Machine Learning
- Volume:
- 2
- Issue:
- 3
- ISSN:
- 2770-9019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synthetic data (SIM) drawn from simulators have emerged as a popular alternative for training models where acquiring annotated real-world images is difficult. However, transferring models trained on synthetic images to real-world applications can be challenging due to appearance disparities. A commonly employed solution to counter this SIM2REAL gap is unsupervised domain adaptation, where models are trained using labeled SIM data and unlabeled REAL data. Mispredictions made by such SIM2REAL adapted models are often associated with miscalibration - stemming from overconfident predictions on real data. In this paper, we introduce AUGCAL, a simple training-time patch for unsupervised adaptation that improves SIM2REAL adapted models by - (1) reducing overall miscalibration, (2) reducing overconfidence in incorrect predictions and (3) improving confidence score reliability by better guiding misclassification detection - all while retaining or improving SIM2REAL performance. Given a base SIM2REAL adaptation algorithm, at training time, AUGCAL involves replacing vanilla SIM images with strongly augmented views (AUG intervention) and additionally optimizing for a training time calibration loss on augmented SIM predictions (CAL intervention). We motivate AUGCAL using a brief analytical justification of how to reduce miscalibration on unlabeled REAL data. Through our experiments, we empirically show the efficacy of AUGCAL across multiple adaptation methods, backbones, tasks and shifts.more » « less
-
Inverse rendering pipelines are gaining prominence in realizing photo-realistic reconstruction of real-world objects for emulating them in virtual reality scenes. Apart from material reflectances, spectral rendering and in-scene illuminants' spectral power distributions (SPDs) play important roles in producing photo-realistic images. We present a simple, low-cost technique to capture and reconstruct the SPD of uniform illuminants. Instead of requiring a costly spectrometer for such measurements, our method uses a diffractive compact disk (CD-ROM) and a machine learning approach for accurate estimation. We show our method to work well with spotlights under simulations and few real-world examples. Presented results clearly demonstrate the reliability of our approach through quantitative and qualitative evaluations, especially in spectral rendering of iridescent materials.more » « less
-
Simulation provides vast benefits for the field of robotics and Human-Robot Interaction (HRI). This study investigates how sensor effects seen in the real domain can be modeled in simulation and what role they play in effective Sim2Real domain transfer for learned perception models. The study considers introducing naive noise approaches such as additive Gaussian and salt and pepper noise as well as data-driven sensor effects models into simulation for representing Microsoft Kinect sensor capabilities and phenomena seen on real world systems. This study quantifies the benefit of multiple approaches to modeling sensor effects in simulation for Sim2Real domain transfer by their object classification improvements in the real domain. User studies are conducted to address hypotheses by training grounded language models in each of the sensor effects modeling cases and evaluated on the robot's interaction capabilities in the real domain. In addition to grounded language performance metrics, user study evaluation includes surveys on the human participant's assessment of the robot's capabilities in the real domain. Results from this pilot study show benefits to modeling sensor noise in simulation for Sim2Real domain transfer. This study also begins to explore the effects that such models have on human-robot interactions.more » « less
-
ABSTRACT Accurately accounting for spectral structure in spectrometer data induced by instrumental chromaticity on scales relevant for detection of the 21-cm signal is among the most significant challenges in global 21-cm signal analysis. In the publicly available Experiment to Detect the Global Epoch of Reionization Signature low-band data set, this complicating structure is suppressed using beam-factor-based chromaticity correction (BFCC), which works by dividing the data by a sky-map-weighted model of the spectral structure of the instrument beam. Several analyses of these data have employed models that start with the assumption that this correction is complete. However, while BFCC mitigates the impact of instrumental chromaticity on the data, given realistic assumptions regarding the spectral structure of the foregrounds, the correction is only partial. This complicates the interpretation of fits to the data with intrinsic sky models (models that assume no instrumental contribution to the spectral structure of the data). In this paper, we derive a BFCC data model from an analytical treatment of BFCC and demonstrate using simulated observations that, in contrast to using an intrinsic sky model for the data, the BFCC data model enables unbiased recovery of a simulated global 21-cm signal from beam-factor chromaticity-corrected data in the limit that the data are corrected with an error-free beam-factor model.more » « less