skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 1, 2025

Title: Nonlinear Dynamics for the Ising Model
Abstract We introduce and analyze a natural class of nonlinear dynamics for spin systems such as the Ising model. This class of dynamics is based on the framework of mass action kinetics, which models the evolution of systems of entities under pairwise interactions, and captures a number of important nonlinear models from various fields, including chemical reaction networks, Boltzmann’s model of an ideal gas, recombination in population genetics and genetic algorithms. In the context of spin systems, it is a natural generalization of linear dynamics based on Markov chains, such as Glauber dynamics and block dynamics, which are by now well understood. However, the inherent nonlinearity makes the dynamics much harder to analyze, and rigorous quantitative results so far are limited to processes which converge to essentially trivial stationary distributions that are product measures. In this paper we provide the first quantitative convergence analysis for natural nonlinear dynamics in a combinatorial setting where the stationary distribution contains non-trivial correlations, namely spin systems at high temperatures. We prove that nonlinear versions of both the Glauber dynamics and the block dynamics converge to the Gibbs distribution of the Ising model (with given external fields) in times$$O(n\log n)$$ O ( n log n ) and$$O(\log n)$$ O ( log n ) respectively, wherenis the size of the underlying graph (number of spins). Given the lack of general analytical methods for such nonlinear systems, our analysis is unconventional, and combines tools such as information percolation (due in the linear setting to Lubetzky and Sly), a novel coupling of the Ising model with Erdős-Rényi random graphs, and non-traditional branching processes augmented by a “fragmentation” process. Our results extend immediately to any spin system with a finite number of spins and bounded interactions.  more » « less
Award ID(s):
2231095
PAR ID:
10561486
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Communications in Mathematical Physics
Volume:
405
Issue:
11
ISSN:
0010-3616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We state a general purpose algorithm for quickly finding primes in evenly divided sub-intervals. Legendre’s conjecture claims that for every positive integern, there exists a prime between$$n^2$$ n 2 and$$(n+1)^2$$ ( n + 1 ) 2 . Oppermann’s conjecture subsumes Legendre’s conjecture by claiming there are primes between$$n^2$$ n 2 and$$n(n+1)$$ n ( n + 1 ) and also between$$n(n+1)$$ n ( n + 1 ) and$$(n+1)^2$$ ( n + 1 ) 2 . Using Cramér’s conjecture as the basis for a heuristic run-time analysis, we show that our algorithm can verify Oppermann’s conjecture, and hence also Legendre’s conjecture, for all$$n\le N$$ n N in time$$O( N \log N \log \log N)$$ O ( N log N log log N ) and space$$N^{O(1/\log \log N)}$$ N O ( 1 / log log N ) . We implemented a parallel version of our algorithm and improved the empirical verification of Oppermann’s conjecture from the previous$$N = 2\cdot 10^{9}$$ N = 2 · 10 9 up to$$N = 7.05\cdot 10^{13} > 2^{46}$$ N = 7.05 · 10 13 > 2 46 , so we were finding 27 digit primes. The computation ran for about half a year on each of two platforms: four Intel Xeon Phi 7210 processors using a total of 256 cores, and a 192-core cluster of Intel Xeon E5-2630 2.3GHz processors. 
    more » « less
  2. Abstract In this paper, we focus on constructing unique-decodable and list-decodable codes for the recently studied (t, e)-composite-asymmetric error-correcting codes ((t, e)-CAECCs). Let$$\mathcal {X}$$ X be an$$m \times n$$ m × n binary matrix in which each row has Hamming weightw. If at mosttrows of$$\mathcal {X}$$ X contain errors, and in each erroneous row, there are at mosteoccurrences of$$1 \rightarrow 0$$ 1 0 errors, we say that a (t, e)-composite-asymmetric error occurs in$$\mathcal {X}$$ X . For general values ofm, n, w, t, ande, we propose new constructions of (t, e)-CAECCs with redundancy at most$$(t-1)\log (m) + O(1)$$ ( t - 1 ) log ( m ) + O ( 1 ) , whereO(1) is independent of the code lengthm. In particular, this yields a class of (2, e)-CAECCs that are optimal in terms of redundancy. Whenmis a prime power, the redundancy can be further reduced to$$(t-1)\log (m) - O(\log (m))$$ ( t - 1 ) log ( m ) - O ( log ( m ) ) . To further increase the code size, we introduce a combinatorial object called a weak$$B_e$$ B e -set. When$$e = w$$ e = w , we present an efficient encoding and decoding method for our codes. Finally, we explore potential improvements by relaxing the requirement of unique decoding to list-decoding. We show that when the list size ist! or an exponential function oft, there exist list-decodable (t, e)-CAECCs with constant redundancy. When the list size is two, we construct list-decodable (3, 2)-CAECCs with redundancy$$\log (m) + O(1)$$ log ( m ) + O ( 1 )
    more » « less
  3. Abstract Spin defects in van der Waals materials offer a promising platform for advancing quantum technologies. Here, we propose and demonstrate a powerful technique based on isotope engineering of host materials to significantly enhance the coherence properties of embedded spin defects. Focusing on the recently-discovered negatively charged boron vacancy center ($${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B ) in hexagonal boron nitride (hBN), we grow isotopically purified h10B15N crystals. Compared to$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B in hBN with the natural distribution of isotopes, we observe substantially narrower and less crowded$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B spin transitions as well as extended coherence timeT2and relaxation timeT1. For quantum sensing,$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B centers in our h10B15N samples exhibit a factor of 4 (2) enhancement in DC (AC) magnetic field sensitivity. For additional quantum resources, the individual addressability of the$${{{{{{{{\rm{V}}}}}}}}}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$ V B hyperfine levels enables the dynamical polarization and coherent control of the three nearest-neighbor15N nuclear spins. Our results demonstrate the power of isotope engineering for enhancing the properties of quantum spin defects in hBN, and can be readily extended to improving spin qubits in a broad family of van der Waals materials. 
    more » « less
  4. Abstract We continue the program of proving circuit lower bounds via circuit satisfiability algorithms. So far, this program has yielded several concrete results, proving that functions in$$\mathsf {Quasi}\text {-}\mathsf {NP} = \mathsf {NTIME}[n^{(\log n)^{O(1)}}]$$ Quasi - NP = NTIME [ n ( log n ) O ( 1 ) ] and other complexity classes do not have small circuits (in the worst case and/or on average) from various circuit classes$$\mathcal { C}$$ C , by showing that$$\mathcal { C}$$ C admits non-trivial satisfiability and/or#SAT algorithms which beat exhaustive search by a minor amount. In this paper, we present a new strong lower bound consequence of having a non-trivial#SAT algorithm for a circuit class$${\mathcal C}$$ C . Say that a symmetric Boolean functionf(x1,…,xn) issparseif it outputs 1 onO(1) values of$${\sum }_{i} x_{i}$$ i x i . We show that for every sparsef, and for all “typical”$$\mathcal { C}$$ C , faster#SAT algorithms for$$\mathcal { C}$$ C circuits imply lower bounds against the circuit class$$f \circ \mathcal { C}$$ f C , which may bestrongerthan$$\mathcal { C}$$ C itself. In particular:#SAT algorithms fornk-size$$\mathcal { C}$$ C -circuits running in 2n/nktime (for allk) implyNEXPdoes not have$$(f \circ \mathcal { C})$$ ( f C ) -circuits of polynomial size.#SAT algorithms for$$2^{n^{{\varepsilon }}}$$ 2 n ε -size$$\mathcal { C}$$ C -circuits running in$$2^{n-n^{{\varepsilon }}}$$ 2 n n ε time (for someε> 0) implyQuasi-NPdoes not have$$(f \circ \mathcal { C})$$ ( f C ) -circuits of polynomial size. Applying#SAT algorithms from the literature, one immediate corollary of our results is thatQuasi-NPdoes not haveEMAJ∘ACC0∘THRcircuits of polynomial size, whereEMAJis the “exact majority” function, improving previous lower bounds againstACC0[Williams JACM’14] andACC0∘THR[Williams STOC’14], [Murray-Williams STOC’18]. This is the first nontrivial lower bound against such a circuit class. 
    more » « less
  5. Abstract We propose a generic compiler that can convert any zero-knowledge (ZK) proof for SIMD circuits to general circuits efficiently, and an extension that can preserve the space complexity of the proof systems. Our compiler can immediately produce new results improving upon state of the art.By plugging in our compiler to Antman, an interactive sublinear-communication protocol, we improve the overall communication complexity for general circuits from$$\mathcal {O}(C^{3/4})$$ O ( C 3 / 4 ) to$$\mathcal {O}(C^{1/2})$$ O ( C 1 / 2 ) . Our implementation shows that for a circuit of size$$2^{27}$$ 2 27 , it achieves up to$$83.6\times $$ 83.6 × improvement on communication compared to the state-of-the-art implementation. Its end-to-end running time is at least$$70\%$$ 70 % faster in a 10Mbps network.Using the recent results on compressed$$\varSigma $$ Σ -protocol theory, we obtain a discrete-log-based constant-round zero-knowledge argument with$$\mathcal {O}(C^{1/2})$$ O ( C 1 / 2 ) communication and common random string length, improving over the state of the art that has linear-size common random string and requires heavier computation.We improve the communication of a designatedn-verifier zero-knowledge proof from$$\mathcal {O}(nC/B+n^2B^2)$$ O ( n C / B + n 2 B 2 ) to$$\mathcal {O}(nC/B+n^2)$$ O ( n C / B + n 2 ) .To demonstrate the scalability of our compilers, we were able to extract a commit-and-prove SIMD ZK from Ligero and cast it in our framework. We also give one instantiation derived from LegoSNARK, demonstrating that the idea of CP-SNARK also fits in our methodology. 
    more » « less