skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: What do MLLMs hear? Examining reasoning with text and audio encoder components in Multimodal Large Language Models.
Large Language Models (LLMs) have demonstrated remarkable reasoning capabilities, notably in connecting ideas and adhering to logical rules to solve problems. These models have evolved to accommodate various data modalities, including sound and images, known as multimodal LLMs (MLLMs), which are capable of describing images or sound recordings. Previous work has demonstrated that when the LLM component in MLLMs is frozen, the audio or visual encoder serves to caption the sound or image input facilitating text-based reasoning with the LLM component. We are interested in using the LLM's reasoning capabilities in order to facilitate classification. In this paper, we demonstrate through a captioning/classification experiment that an audio MLLM cannot fully leverage its LLM's text-based reasoning when generating audio captions. We also consider how this may be due to MLLMs separately representing auditory and textual information such that it severs the reasoning pathway from the LLM to the audio encoder.  more » « less
Award ID(s):
1839185 2228910
PAR ID:
10561553
Author(s) / Creator(s):
; ;
Publisher / Repository:
NeurIPS Audio Imagination Workshop
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spatial sound reasoning is a fundamental human skill, enabling us to navigate and interpret our surroundings based on sound. In this paper we present BAT, which combines the spatial sound perception ability of a binaural acoustic scene analysis model with the natural language reasoning capabilities of a large language model (LLM) to replicate this innate ability. To address the lack of existing datasets of in-the-wild spatial sounds, we synthesized a binaural audio dataset using AudioSet and SoundSpaces 2.0. Next, we developed SpatialSoundQA, a spatial sound-based question-answering dataset, offering a range of QA tasks that train BAT in various aspects of spatial sound perception and reasoning. The acoustic front end encoder of BAT is a novel spatial audio encoder named Spatial Audio Spectrogram Transformer, or Spatial-AST, which by itself achieves strong performance across sound event detection, spatial localization, and distance estimation. By integrating Spatial-AST with LLaMA-2 7B model, BAT transcends standard Sound Event Localization and Detection (SELD) tasks, enabling the model to reason about the relationships between the sounds in its environment. Our experiments demonstrate BAT's superior performance on both spatial sound perception and reasoning, showcasing the immense potential of LLMs in navigating and interpreting complex spatial audio environments. 
    more » « less
  2. Recent advances in Large Language Models (LLMs) have demonstrated significant potential in the field of Recommendation Systems (RSs). Most existing studies have focused on converting user behavior logs into textual prompts and leveraging techniques such as prompt tuning to enable LLMs for recommendation tasks. Meanwhile, research interest has recently grown in multimodal recommendation systems that integrate data from images, text, and other sources using modality fusion techniques. This introduces new challenges to the existing LLM-based recommendation paradigm which relies solely on text modality information. Moreover, although Multimodal Large Language Models (MLLMs) capable of processing multi-modal inputs have emerged, how to equip MLLMs with multi-modal recommendation capabilities remains largely unexplored. To this end, in this paper, we propose the Multimodal Large Language Model-enhanced Sequential Multimodal Recommendation (MLLM-MSR) model. To capture the dynamic user preference, we design a two-stage user preference summarization method. Specifically, we first utilize an MLLM-based item-summarizer to extract image feature given an item and convert the image into text. Then, we employ a recurrent user preference summarization generation paradigm to capture the dynamic changes in user preferences based on an LLM-based user-summarizer. Finally, to enable the MLLM for multi-modal recommendation task, we propose to fine-tune a MLLM-based recommender using Supervised Fine-Tuning (SFT) techniques. Extensive evaluations across various datasets validate the effectiveness of MLLM-MSR, showcasing its superior ability to capture and adapt to the evolving dynamics of user preferences. 
    more » « less
  3. Large Language Models (LLMs) have made significant strides in various intelligent tasks but still struggle with complex action reasoning tasks that require systematic search. To address this limitation, we introduce a method that bridges the natural language understanding capability of LLMs with the symbolic reasoning capability of action languages---formal languages for reasoning about actions. Our approach, termed {\sf LLM+AL}, leverages the LLM's strengths in semantic parsing and commonsense knowledge generation alongside the action language's expertise in automated reasoning based on encoded knowledge. We compare {\sf LLM+AL} against state-of-the-art LLMs, including {\sc ChatGPT-4}, {\sc Claude 3 Opus}, {\sc Gemini Ultra 1.0}, and {\sc o1-preview}, using benchmarks for complex reasoning about actions. Our findings indicate that while all methods exhibit various errors, {\sf LLM+AL}, with relatively simple human corrections, consistently leads to correct answers, whereas using LLMs alone does not yield improvements even after human intervention. {\sf LLM+AL} also contributes to automated generation of action languages. 
    more » « less
  4. Standard training for Multi-modal Large Language Models (MLLMs) involves concatenating non-textual information, like vision or audio, with a text prompt. This approach may not encourage deep integration of modalities, limiting the model's ability to leverage the core language model's reasoning capabilities. This work examined the impact of interleaved instruction tuning in an audio MLLM, where audio tokens are interleaved within the prompt. Using the Listen, Think, and Understand (LTU) model as a testbed, we conduct an experiment using the Synonym and Hypernym Audio Reasoning Dataset (SHARD), our newly created reasoning benchmark for audio-based semantic reasoning focusing on synonym and hypernym recognition. Our findings show that while even zero-shot interleaved prompting improves performance on our reasoning tasks, a small amount of fine-tuning using interleaved training prompts improves the results further, however, at the expense of the MLLM's audio labeling ability. 
    more » « less
  5. High-quality knowledge graphs (KGs) play a crucial role in many applications. However, KGs created by automated information extraction systems can suffer from erroneous extractions or be inconsistent with provenance/source text. It is important to identify and correct such problems. In this paper, we study leveraging the emergent reasoning capabilities of large language models (LLMs) to detect inconsistencies between extracted facts and their provenance. With a focus on ``open'' LLMs that can be run and trained locally, we find that few-shot approaches can yield an absolute performance gain of 2.5-3.4% over the state-of-the-art method with only 9% of training data. We examine the LLM architectures' effect and show that Decoder-Only models underperform Encoder-Decoder approaches. We also explore how model size impacts performance and counterintuitively find that larger models do not result in consistent performance gains. Our detailed analyses suggest that while LLMs can improve KG consistency, the different LLM models learn different aspects of KG consistency and are sensitive to the number of entities involved. 
    more » « less