skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular underpinnings of plasticity and supergene-mediated polymorphism in fire ant queens
Characterizing molecular underpinnings of plastic traits and balanced polymorphisms represent two important goals of evolutionary biology. Fire ant gynes (pre-reproductive queens) provide an ideal system to study potential links between these phenomena because they exhibit both supergene-mediated polymorphism and nutritional plasticity in weight and colony-founding behavior. Gynes with the inversion supergene haplotype are lightweight and depend on existing workers to initiate reproduction. Gynes with only the ancestral, non-inverted gene arrangement accumulate more nutrient reserves as adults and, in a distinct colony-founding behavior, initiate reproduction without help from workers. However, when such gynes overwinter in the natal nest they develop an environmentally induced lightweight phenotype and colony-founding behavior, similar to gynes with the inversion haplotype that have not overwintered. To evaluate the extent of shared mechanisms between plasticity and balanced polymorphism in fire ant gyne traits, we assessed whether genes with expression variation linked to overwintering plasticity may be affected by evolutionary divergence between supergene haplotypes. To do so, we first compared transcriptional profiles of brains and ovaries from overwintered and non-overwintered gynes to identify plasticity-associated genes. These genes were enriched for metabolic and behavioral functions. Next, we compared plasticity-associated genes to those differentially expressed by supergene genotype, revealing a significant overlap of the two sets in ovarian tissues. We also identified sequence substitutions between supergene variants of multiple plasticity-associated genes, consistent with a scenario in which an ancestrally plastic phenotype responsive to an environmental condition became increasingly genetically regulated.  more » « less
Award ID(s):
1754476 1755130 2310983
PAR ID:
10561753
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press on behalf of the European Society of Evolutionary Biology
Date Published:
Journal Name:
Journal of Evolutionary Biology
ISSN:
1420-9101
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Genes and the environment jointly shape individual traits, but the influence of indirect genetic effects (IGEs), arising from the genetic composition of interacting conspecific individuals, is often ignored or underemphasized. Moreover, because of practical challenges in characterizing IGEs, empirical research has fallen behind theoretical advancement. The fire antSolenopsis invictaoffers a uniquely suitable study system due to its distinct colony-level phenotypic variation (monogyne and polygyne social forms) attributed to IGEs of a social-supergene variant (ballele). A minority ofb-carrying workers (Bbgenotype) can trigger colony-level conversion from monogyne (single queen per colony) to polygyne (multiple queens per colony) behavior. This study investigated the mechanisms underlying this process via 400-ant microcolonies. We first showed that assimilatedBbworkers reduce aggression by hostBBworkers towardBbqueens, thus inducing polygyny, at rates observed earlier in experiments that used full-size (>20,000 ants) colonies. We then demonstrated that social conversion is facilitated by cuticular contact between the worker types, and verified the presence of nonvolatile cuticular pheromones that are necessary but not sufficient components underpinning this process. Follow-up experiments suggested that a second, polygyne worker-produced pheromone that is only released once such workers detect aBbqueen is also necessary but again insufficient, for full expression of the conversion phenomenon. Thus, multiple pheromonal components linked to presence of thebsupergene allele in colony workers appear to be involved in shaping social environments and thereby inducing, via IGEs, the transformation from monogyne to polygyne fire ant societies. 
    more » « less
  2. Parsch, John (Ed.)
    Abstract Supergenes underlying complex trait polymorphisms ensure sets of coadapted alleles remain genetically linked. Despite their prevalence in nature, the mechanisms of supergene effects on genome regulation are poorly understood. In the fire ant Solenopsis invicta, a supergene containing over 500 individual genes influences trait variation in multiple castes to collectively underpin a colony level social polymorphism. Here, we present results of an integrative investigation of supergene effects on gene regulation. We present analyses of ATAC-seq data to investigate variation in chromatin accessibility by supergene genotype and STARR-seq data to characterize enhancer activity by supergene haplotype. Integration with gene co-expression analyses, newly mapped intact transposable elements (TEs), and previously identified copy number variants (CNVs), collectively reveal widespread effects of the supergene on chromatin structure, gene transcription, and regulatory element activity, with a genome-wide bias for open chromatin and increased expression in the presence of the derived supergene haplotype, particularly in regions that harbor intact TEs. Integrated consideration of CNVs and regulatory element divergence suggests each evolved in concert to shape the expression of supergene encoded factors, including several transcription factors that may directly contribute to the trans-regulatory footprint of a heteromorphic social chromosome. Overall, we show how genome structure in the form of a supergene has wide-reaching effects on gene regulation and gene expression. 
    more » « less
  3. Kulathinal, R (Ed.)
    Selfish genetic elements subvert the normal rules of inheritance to unfairly propagate themselves, often at the expense of other genomic elements and the fitness of individuals carrying them. Social life provides diverse avenues for the propagation of such elements. In the fire ant Solenopsis invicta, polymorphic social organization is controlled by a social chromosome, one variant of which (Sb) enhances its own transmission in polygyne colonies through effects on caste development and queen acceptance by workers. Whether the selfish effects of Sb extend to haploid (reproductive) males in this system is less clear. Here, we demonstrate a strong overrepresentation of the Sb social chromosome haplotype in reproductive males, relative to Mendelian expectations, in both the pupal and adult stages. We tested for the presence of selective execution of adult SB males by workers but did not detect such behavior. Combined with the presence of a strong imbalance in the haplotype frequencies already early in the pupal stage, these results indicate that the Sb supergene may distort male haplotype frequencies during larval or embryonic development. These findings are significant because they demonstrate yet another mode by which the selfish tendencies of the Sb supergene are manifested, illuminate complex interactions between Sb and the fire ant breeding system, inform the development of models of the population dynamics of Sb, and illustrate how a selfish supergene can increase in frequency in a population despite harboring deleterious mutations. 
    more » « less
  4. Rogers, Rebekah; Larson, Erica (Ed.)
    Abstract Ants exhibit many complex social organization strategies. One particularly elaborate strategy is supercoloniality, in which a colony consists of many interconnected nests (= polydomy) with many queens (= polygyny). In many species of Formica ants, an ancient queen number supergene determines whether a colony is monogyne (= headed by single queen) or polygyne. The presence of the rearranged P haplotype typically leads colonies to be polygyne. However, the presence and function of this supergene polymorphism have not been examined in supercolonial populations. Here, we use genomic data from species in the Formica rufa group to determine whether the P haplotype leads to supercoloniality. In a Formica paralugubris population, we find that nests are polygyne despite the absence of the P haplotype in workers. We find spatial genetic ancestry patterns in nests consistent with supercolonial organization. Additionally, we find that the P haplotype is also absent in workers from supercolonial Formica aquilonia and Formica aquilonia × polyctena hybrid populations but is present in some Formica polyctena workers. We conclude that the P haplotype is not necessary for supercoloniality in the Formica rufa group, despite its long-standing association with non-supercolonial polygyny across the Formica genus. 
    more » « less
  5. Antagonistic selection has long been considered a major driver of the formation and expansion of sex chromosomes. For example, sexually antagonistic variation on an autosome can select for suppressed recombination between that autosome and the sex chromosome, leading to a neo-sex chromosome. Autosomal supergenes, chromosomal regions containing tightly linked variants affecting the same complex trait, share similarities with sex chromosomes, raising the possibility that sex chromosome evolution models can explain the evolution of genome structure and recombination in other contexts. We tested this premise in a Formica ant species wherein we identified four supergene haplotypes on chromosome 3 underlying colony social organization and sex ratio. We discovered a novel rearranged supergene variant (9r) on chromosome 9 underlying queen miniaturization. The 9r is in strong linkage disequilibrium with one chromosome 3 haplotype (P2) found in multi-queen (polygyne) colonies. We suggest that queen miniaturization is strongly disfavored in the single queen (monogyne) background, and thus socially antagonistic. As such, divergent selection experienced by ants living in alternative social ‘environments’ (monogyne and polygyne) may have contributed to the emergence of a genetic polymorphism on chromosome 9 and associated queen-size dimorphism. Consequently, an ancestral polygyne-associated haplotype may have expanded to include the polymorphism on chromosome 9, resulting in a larger region of suppressed recombination spanning two chromosomes. This process is analogous to the formation of neo-sex chromosomes and consistent with models of expanding regions of suppressed recombination. We propose that miniaturized queens, 16-20% smaller than queens without 9r, could be incipient intraspecific social parasites. 
    more » « less