skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Global Predictability of Marine Heatwave Induced Rapid Intensification of Tropical Cyclones
Abstract Prediction of the rapid intensification (RI) of tropical cyclones (TCs) is crucial for improving disaster preparedness against storm hazards. These events can cause extensive damage to coastal areas if occurring close to landfall. Available models struggle to provide accurate RI estimates due to the complexity of underlying physical mechanisms. This study provides new insights into the prediction of a subset of rapidly intensifying TCs influenced by prolonged ocean warming events known as marine heatwaves (MHWs). MHWs could provide sufficient energy to supercharge TCs. Preconditioning by MHW led to RI of recent destructive TCs, Otis (2023), Doksuri (2023), and Ian (2022), with economic losses exceeding $150 billion. Here, we analyze the TC best track and sea surface temperature data from 1981 to 2023 to identify hotspot regions for compound events, where MHWs and RI of tropical cyclones occur concurrently or in succession. Building upon this, we propose an ensemble machine learning model for RI forecasting based on storm and MHW characteristics. This approach is particularly valuable as RI forecast errors are typically largest in favorable environments, such as those created by MHWs. Our study offers insight into predicting MHW TCs, which have been shown to be stronger TCs with potentially higher destructive power. Here, we show that using MHW predictors instead of the conventional method of using sea surface temperature reduces the false alarm rate by 30%. Overall, our findings contribute to coastal hazard risk awareness amidst unprecedented climate warming causing more frequent MHWs.  more » « less
Award ID(s):
2223893
PAR ID:
10561935
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
12
Issue:
12
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tropical cyclones (TCs) that undergo rapid intensification (RI) before landfall are notoriously difficult to predict and have caused tremendous damage to coastal regions in the United States. Using downscaled synthetic TCs and physics‐based models for storm tide and rain, we investigate the hazards posed by TCs that rapidly intensify before landfall under both historical and future mid‐emissions climate scenarios. In the downscaled synthetic data, the percentage of TCs experiencing RI is estimated to rise across a significant portion of the North Atlantic basin. Notably, future climate warming causes large increases in the probability of RI within 24 hr of landfall. Also, our analysis shows that RI events induce notably higher rainfall hazard levels than non‐RI events with equivalent TC intensities. As a result, RI events dominate increases in 100‐year rainfall and storm tide levels under climate change for most of the US coastline. 
    more » « less
  2. Abstract The spatiotemporal evolution of marine heatwaves (MHWs) is explored using a tracking algorithm called Ocetrac that provides the objective characterization of MHW spatiotemporal evolution. Candidate MHW grid points are defined in detrended gridded sea temperature data using a seasonally varying temperature threshold. Identified MHW points are collected into spatially distinct objects using edge detection with weak sensitivity to edge detection and size percentile threshold criteria at each time step. Ocetrac then uses 3D connectivity to determine if these objects are part of the same event, but Ocetrac only defines the full MHW event after all time steps have been processed, limiting its use in predictability studies. Here, Ocetrac is applied to monthly satellite sea surface temperature data from September 1981 through January 2021. The resulting MHWs are characterized by their intensity, duration, and total area covered. The global analysis shows that MHWs in the Gulf of Maine and Mediterranean Sea are spatially isolated, while major MHWs in the Pacific and Indian Oceans are connected in space and time. The largest and most long-lasting MHW using this method lasts for 60 months from November 2013 to October 2018, encompassing previously identified MHW events including those in the northeast Pacific (2014–15), the Tasman Sea (2015–16, 2017–18), and the Great Barrier Reef (2016). Significance StatementThis study introduces Ocetrac, a method to track the spatiotemporal evolution of marine heatwaves (MHWs). It is applied to satellite sea surface temperature data from 1981 to 2021. The method objectively identifies and tracks MHWs in space and time while allowing for splitting and merging. The resulting MHWs are characterized by intensity, duration, and total area covered. Marine heatwaves can have significant ecological consequences, including biodiversity loss and mortality, geographical shifts, and range reductions in marine species and community structure changes when physiological thresholds are exceeded. This results in both ecological and economic impacts. Ocetrac provides a method of tracking the space and time evolution of MHWs that can provide a visualization that demonstrates the global impact of these events. 
    more » « less
  3. Abstract. Intense tropical cyclones (TCs) can cause catastrophic damage to coastal regions after landfall. Recent studies have linked the devastation associated with TCs to climate change, which induces favorable conditions, such as increasing sea-surface temperature, to supercharge storms. Meanwhile, environmental factors, such as atmospheric aerosols, also impact the development and intensity of TCs, but their effects remain poorly understood, particularly coupled with ocean dynamics. Here, we quantitatively assess the aerosol microphysical effects and aerosol-modified ocean feedbacks during Hurricane Katrina using a cloud-resolving atmosphere–ocean coupled model: Weather Research and Forecasting (WRF) in conjunction with the Regional Ocean Model System (ROMS). Our model simulations reveal that an enhanced storm destructive power, as reflected by larger integrated kinetic energy, heavier precipitation, and higher sea-level rise, is linked to the combined effects of aerosols and ocean feedbacks. These effects further result in an expansion of the storm circulation with a reduced intensity because of a decreasing moist static energy supply and enhancing vorticity Rossby wave outward propagation. Both accumulated precipitation and storm surge are enhanced during the mature stage of the TC with elevated aerosol concentrations, implying exacerbated flood damage over the polluted coastal region. The ocean feedback following the aerosol microphysical effects tends to mitigate the vertical mixing cooling in the ocean mixing layer and offsets the aerosol-induced storm weakening by enhancing cloud and precipitation near the eyewall region. Our results highlight the importance of accounting for the effects of aerosol microphysics and ocean-coupling feedbacks to improve the forecast of TC destructiveness, particularly near the heavily polluted coastal regions along the Gulf of Mexico. 
    more » « less
  4. Abstract During 2013–16 and 2018–22, marine heatwaves (MHWs) occurred in the North Pacific, exhibiting similar extensive coverage, lengthy duration, and significant intensity but with different warming centers. The warming center of the 2013–16 event was in the Gulf of Alaska (GOA), while the 2018–22 event had warming centers in both the GOA and the coast of Japan (COJ). Our observational analysis indicates that these two events can be considered as two MHW variants induced by a basinwide MHW conditioning mode in the North Pacific. Both variants were driven thermodynamically by atmospheric wave trains propagating from the tropical Pacific to the North Pacific, within the conditioning mode. The origin and propagating path of these wave trains play a crucial role in determining the specific type of MHW variant. When a stronger wave train originates from the tropical central (western) Pacific, it leads to the GOA (COJ) variant. The cross-basin nature of the wave trains enables the two MHW variants to be accompanied by a tripolar pattern of sea surface temperature anomalies in the North Atlantic but with opposite phases. The association of these two MHW variants with the Atlantic Ocean also manifests in the decadal variations of their occurrence. Both variants tend to occur more frequently during the positive phase of the Atlantic multidecadal oscillation but less so during the negative phase. This study underscores the importance of cross-basin associations between the North Pacific and North Atlantic in shaping the dynamics of North Pacific MHWs. 
    more » « less
  5. Coastal flooding poses the greatest threat to human life and is often the most common source of damage from coastal storms. From 1980 to 2020, the top 6, and 17 of the top 25, costliest natural disasters in the U.S. were caused by coastal storms, most of these tropical systems. The Delaware and Chesapeake Bays, two of the largest and most densely populated estuaries in the U.S. located in the Mid-Atlantic coastal region, have been significantly impacted by strong tropical cyclones in recent decades, notably Hurricanes Isabel (2003), Irene (2011), and Sandy (2012). Current scenarios of future climate project an increase in major hurricanes and the continued rise of sea levels, amplifying coastal flooding threat. We look at all North Atlantic tropical cyclones (TC) in the International Best Track Archive for Climate Stewardship (IBTrACS) database that came within 750 km of the Delmarva Peninsula from 1980 to 2019. For each TC, skew surge and storm tide are computed at 12 NOAA tide gauges throughout the two bays. Spatial variability of the detrended and normalized skew surge is investigated through cross-correlations, regional storm rankings, and comparison to storm tracks. We find Hurricanes Sandy (2012) and Isabel (2003) had the largest surge impact on the Delaware and Chesapeake Bay, respectively. Surge response to TCs in upper and lower bay regions are more similar across bays than to the opposing region in their own bay. TCs that impacted lower bay more than upper bay regions tended to stay offshore east of Delmarva, whereas TCs that impacted upper bay regions tended to stay to the west of Delmarva. Although tropical cyclones are multi-hazard weather events, there continues to be a need to improve storm surge forecasting and implement strategies to minimize the damage of coastal flooding. Results from this analysis can provide insight on the potential regional impacts of coastal flooding from tropical cyclones in the Mid-Atlantic. 
    more » « less