skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ANTIMICROBIAL WOUND DRESSINGS FOR FULL-THICKNESS INFECTED BURN WOUNDS
ABSTRACT Infection of wounds delays healing, increases treatment costs, and leads to major complications. Current methods to manage such infections include antibiotic ointments and antimicrobial wound dressings, both of which have significant drawbacks, including frequent reapplication and contribution to antimicrobial resistance. In this work, we developed wound dressings fabricated with a medical-grade polyurethane coating composed of natural plant secondary metabolites, cinnamaldehyde, and alpha-terpineol. Our wound dressings are easy to change and do not adhere to the wound bed. They kill gram-positive and -negative microbes in infected wounds due to the Food and Drug Administration–approved for human consumption components. The wound dressings were fabricated by dip coating. Antimicrobial efficacy was determined by quantifying the bacteria colonies after a 24 h of immersion. Wound healing and bacterial reduction were assessed in anin vivofull-thickness porcine burn model. Our antimicrobial wound dressings showed a > 5-log reduction (99.999%) of different gram-positive and gram-negative bacteria, while maintaining absorbency. In thein vivoporcine burn model, our wound dressings were superior to bacitracin in decreasing bacterial burden during daily changes, without interfering with wound healing. Additionally, the dressings had a significantly lower adhesion to the wound bed. Our antimicrobial wound dressings reduced the burden of clinically relevant bacteria more than commercial antimicrobial wound dressings. In anin vivoinfected burn wound model, our coatings performed as well or better than bacitracin. We anticipate that our wound dressings would be useful for the treatment of various types of acute and chronic wounds.  more » « less
Award ID(s):
2029139
PAR ID:
10561984
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Remick, Daniel
Publisher / Repository:
Shock Society
Date Published:
Journal Name:
Shock
Volume:
62
Issue:
4
ISSN:
1073-2322
Page Range / eLocation ID:
588 to 595
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chronic wounds are a major health problem because of delayed healing, causing hardships for the patient. The infection present in these wounds plays a role in delayed wound healing. Silver wound dressings have been used for decades, beginning in the 1960s with silver sulfadiazine for infection prevention for burn wounds. Since that time, there has been a large number of commercial silver dressings that have obtained FDA clearance. In this review, we examine the literature involving in vitro and in vivo (both animal and human clinical) studies with commercial silver dressings and attempt to glean the important characteristics of these dressings in treating infected wounds. The primary presentation of the literature is in the form of detailed tables. The narrative part of the review focuses on the different types of silver dressings, including the supporting matrix, the release characteristics of the silver into the surroundings, and their toxicity. Though there are many clinical studies of chronic and burn wounds using silver dressings that we discuss, it is difficult to compare the performances of the dressings directly because of the differences in the study protocols. We conclude that silver dressings can assist in wound healing, although it is difficult to provide general treatment guidelines. From a wound dressing point of view, future studies will need to focus on new delivery systems for silver, as well as the type of matrix in which the silver is deposited. Clearly, adding other actives to enhance the antimicrobial activity, including the disruption of mature biofilms is of interest. From a clinical point of view, the focus needs to be on the wound healing characteristics, and thus randomized control trials will provide more confidence in the results. The application of different wound dressings for specific wounds needs to be clarified, along with the application protocols. It is most likely that no single silver-based dressing can be used for all wounds. 
    more » « less
  2. Frederiksberg, Dr_Henrik_Rudolph (Ed.)
    Wound dressings based on natural materials, such as fish skin, represent an important strategy for the treatment of burns. Despite their utility, contamination of these natural materials with bacteria (planktonic and biofilm forms) introduces significant risks to patients under treatment. This disadvantage can be overcome by modifying the material’s surface to prevent bacterial deposition through chemical or physical interactions. In this work, functional graphenic materials (FGM) with tunable surface charges were incorporated into tilapia (Oreochromis niloticus) fish skin as a part of a strategy to control the biofilm adhesion on surfaces. The antibiofilm activity was evaluated against S. aureus and K. pneumoniae due to the biofilm-forming properties of these bacterial strains. FGM-modified tilapia skin samples possess a strong capacity to reduce biofilm formation on the tilapia fish skin with a higher antibiofilm activity against Gram-positive bacteria, compared to Gram-negative bacteria. Negatively charged FGMs were more effective than positively charged FGMs in preventing biofilm formation on the impregnated tilapia skin xenografts: negatively charged Claisen graphene achieved an 88.8% reduction in biofilm formation on the tilapia skin. Overall, this study demonstrates the utility of FGM-impregnated tilapia skins as a treatment for burn wounds due to their ability to modulate bacterial adhesion. 
    more » « less
  3. The inflammasome is a multiprotein complex critical for the innate immune response to injury. Inflammasome activation initiates healthy wound healing, but comorbidities with poor healing, including diabetes, exhibit pathologic, sustained activation with delayed resolution that prevents healing progression. In prior work, we reported the allosteric P2X7 antagonist A438079 inhibits extracellular ATP-evoked NLRP3 signaling by preventing ion flux, mitochondrial reactive oxygen species generation, NLRP3 assembly, mature IL-1β release, and pyroptosis. However, the short half-lifein vivolimits clinical translation of this promising molecule. Here, we develop a controlled release scaffold to deliver A438079 as an inflammasome-modulating wound dressing for applications in poorly healing wounds. We fabricated and characterized tunable thickness, long-lasting silk fibroin dressings and evaluated A438079 loading and release kinetics. We characterized A438079-loaded silk dressingsin vitroby measuring IL-1β release and inflammasome assembly by perinuclear ASC speck formation. We further evaluated the performance of A438079-loaded silk dressings in a full-thickness model of wound healing in genetically diabetic mice and observed acceleration of wound closure by 10 days post-wounding with reduced levels of IL-1β at the wound edge. This work provides a proof-of-principle for translating pharmacologic inhibition of ATP-induced inflammation in diabetic wounds and represents a novel approach to therapeutically targeting a dysregulated mechanism in diabetic wound impairment. 
    more » « less
  4. Wound healing is one of the most complex processes in the human body, supported by many cellular events that are tightly coordinated to repair the wound efficiently. Chronic wounds have potentially life-threatening consequences. Traditional wound dressings come in direct contact with wounds to help them heal and avoid further complications. However, traditional wound dressings have some limitations. These dressings do not provide real-time information on wound conditions, leading clinicians to miss the best time for adjusting treatment. Moreover, the current diagnosis of wounds is relatively subjective. Wearable electronics have become a unique platform to potentially monitor wound conditions in a continuous manner accurately and even to serve as accelerated healing vehicles. In this review, we briefly discuss the wound status with some objective parameters/biomarkers influencing wound healing, followed by the presentation of various novel wearable devices used for monitoring wounds and accelerating wound healing. We further summarize the associated device working principles. This review concludes by highlighting some major challenges in wearable devices toward wound healing that need to be addressed by the research community. 
    more » « less
  5. Abstract Chronic wounds present significant therapeutic challenges due to prolonged inflammation and bacterial infections, impeding healing. Conventional medicinal dressings typically deliver a single drug with a fixed release profile and lack responsiveness to variations in wound size, nature, or severity. This study introduces an innovative microneedle (MN) patch designed with different microneedle geometries and capable of dual‐drug delivery to address irregular wounds and complex therapeutic requirements. Utilizing CO₂ laser lithography, microneedle molds are fabricated with diverse geometries by precisely controlling laser parameters such as speed, power, and focus, achieving needle heights ranging from 162 ± 30 µm to 1570 ± 40 µm. The patch facilitates simultaneous delivery of simvastatin (SIM) for anti‐inflammatory and tetracycline hydrochloride (TH) for antibacterial properties, targeting different skin depths. In vitro diffusion studies confirm geometry‐dependent drug release profiles, with SIM achieving controlled release over three days and TH exhibiting sustained release over four days. Biocompatibility assays confirmed safety and enhanced fibroblast migration is noted in wound‐healing studies. Antimicrobial testing reveals a 99.9% reduction in bacterial viability. This cost‐effective and scalable approach enables precise, localized delivery and customization of MN arrays to match various wound geometries, offering a versatile platform for personalized medicine and improved chronic wound management. 
    more » « less