skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Yukawa-Lorentz symmetry in non-Hermitian Dirac materials
Abstract Lorentz space–time symmetry represents a unifying feature of the fundamental forces, typically manifest at sufficiently high energies, while in quantum materials it emerges in the deep low-energy regime. However, its fate in quantum materials coupled to an environment thus far remained unexplored. We here introduce a general framework of constructing symmetry-protected Lorentz-invariant non-Hermitian (NH) Dirac semimetals (DSMs), realized by invoking masslike anti-Hermitian Dirac operators to its Hermitian counterpart. Such NH DSMs feature purely real or imaginary isotropic linear band dispersion, yielding a vanishing density of states. Dynamic mass orderings in NH DSMs thus take place for strong Hubbard-like local interactions through a quantum phase transition, hosting a non-Fermi liquid, beyond which the system becomes an insulator. We show that depending on the internal Clifford algebra between the NH Dirac operator and candidate mass order-parameter, the resulting quantum-critical fluid either remains coupled with the environment or recovers full Hermiticity by decoupling from the bath, while always enjoying an emergent Yukawa-Lorentz symmetry in terms of a unique terminal velocity. We showcase the competition between such mass orderings, their hallmarks on quasi-particle spectra in the ordered phases, and the relevance of our findings for correlated designer NH Dirac materials.  more » « less
Award ID(s):
2238679
PAR ID:
10562057
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science and Business Media LLC
Date Published:
Journal Name:
Communications Physics
Volume:
7
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The energy spectra of linearly dispersing gapless spin-3/2 Dirac fermions display birefringence, featuring two effective Fermi velocities, thus breaking the space-time Lorentz symmetry. Here, we consider a non-Hermitian (NH) generalization of this scenario by introducing a masslike anti-Hermitian birefringent Dirac operator to its Hermitian counterpart. At the microscopic level, a generalized\pi π -flux square lattice model with imbalance in the hopping amplitudes in the opposite directions among spinless fermions between the nearest-neighbor sites gives rise to pseudospin-3/2 NH Dirac fermions in terms of internal, namely sublattice, degrees of freedom. The resulting NH operator shows real eigenvalue spectra over an extended NH parameter regime, and a combination of non-spatial and discrete rotational symmetries protects the gapless nature of such quasiparticles. However, at the brink of dynamic mass generation, triggered by Hubbardlike local interactions, the birefringent parameter always vanishes under coarse grain due to the Yukawa-type interactions with scalar bosonic order-parameter fluctuations. The resulting quantum critical state is, therefore, described by two decoupled copies of spin-1/2 Dirac fermions with a unique terminal Fermi velocity, which is equal to the bosonic order-parameter velocity, thereby fostering an emergent space-time Lorentz symmetry. Furthermore, depending on the internal algebra between the anti-Hermitian birefringent Dirac operator and the candidate mass order, the system achieves the emergent Yukawa-Lorentz symmetry either by maintaining its non-Hermiticity or by recovering a full Hermiticity. We discuss the resulting quantum critical phenomena and possible microscopic realizations of the proposed scenarios. 
    more » « less
  2. A<sc>bstract</sc> We develop an effective quantum electrodynamics for non-Hermitian (NH) Dirac materials interacting with photons. These systems are described by nonspatial symmetry protected Lorentz invariant NH Dirac operators, featuring two velocity parametersυHandυNHassociated with the standard Hermitian and a masslike anti-Hermitian Dirac operators, respectively. They display linear energy-momentum relation, however, in terms of an effective Fermi velocity$$ {\upsilon}_{\textrm{F}}=\sqrt{\upsilon_{\textrm{H}}^2-{\upsilon}_{\textrm{NH}}^2} $$ υ F = υ H 2 υ NH 2 of NH Dirac fermions. Interaction with the fluctuating electromagnetic radiation then gives birth to an emergent Lorentz symmetry in this family of NH Dirac materials in the deep infrared regime, where the system possesses a unique terminal velocityυF=c, withcbeing the speed of light. While in two dimensions such a terminal velocity is set by the speed of light in the free space, dynamic screening in three spatial dimensions permits its nonuniversal values. Manifestations of such an emergent spacetime symmetry on the scale dependence of various physical observables in correlated NH Dirac materials are discussed. 
    more » « less
  3. Non-Hermitian Hamiltonians provide an alternative perspective on the dynamics of quantum and classical systems coupled non-conservatively to an environment. Once primarily an interest of mathematical physicists, the theory of non-Hermitian Hamiltonians has solidified and expanded to describe various physically observable phenomena in optical, photonic, and condensed matter systems. Self-consistent descriptions of quantum mechanics based on non-Hermitian Hamiltonians have been developed and continue to be refined. In particular, non-Hermitian frameworks to describe magnonic and hybrid magnonic systems have gained popularity and utility in recent years with new insights into the magnon topology, transport properties, and phase transitions coming into view. Magnonic systems are in many ways a natural platform in which to realize non-Hermitian physics because they are always coupled to a surrounding environment and exhibit lossy dynamics. In this Perspective, we review recent progress in non-Hermitian frameworks to describe magnonic and hybrid magnonic systems, such as cavity magnonic systems and magnon–qubit coupling schemes. We discuss progress in understanding the dynamics of inherently lossy magnetic systems as well as systems with gain induced by externally applied spin currents. We enumerate phenomena observed in both purely magnonic and hybrid magnonic systems which can be understood through the lens of non-Hermitian physics, such as PT and anti-PT-symmetry breaking, dynamical magnetic phase transitions, non-Hermitian skin effect, and the realization of exceptional points and surfaces. Finally, we comment on some open problems in the field and discuss areas for further exploration. 
    more » « less
  4. Abstract Topological and symmetry‐protected non‐Hermitian zero modes have attracted considerable interest in the past few years. Here, it is revealed that they can exhibit an unusual behavior when transitioning between the extended and localized regimes: When weakly coupled to a non‐Hermitian reservoir, such a zero mode displays a linearly decreasing amplitude as a function of space, which is not caused by an EP of a Hamiltonian, either of the entire system or the reservoir itself. Instead, this phenomenon is due to the non‐Bloch solution of a linear homogeneous recurrence relation, together with the underlying non‐Hermitian particle‐hole symmetry and the zeroness of its energy. 
    more » « less
  5. Engineered non-Hermitian systems featuring exceptional points (EPs) can lead to a host of extraordinary phenomena in diverse fields ranging from photonics, acoustics, opto-mechanics, and electronics to atomic physics. In optics, non-Hermitian dynamics are typically realized using dissipation and phase-insensitive gain accompanied by unavoidable fluctuations. Here, we introduce non-Hermitian dynamics of coupled optical parametric oscillators (OPOs) arising from phase-sensitive amplification and de-amplification, and show their distinct advantages over conventional non-Hermitian systems relying on laser gain and loss. OPO-based non-Hermitian systems can benefit from the instantaneous nature of the parametric gain, noiseless phase-sensitive amplification, and rich quantum and classical nonlinear dynamics. We show that two coupled OPOs can exhibit spectral anti-parity-time (anti-PT) symmetry and a EP between its degenerate and nondegenerate operation regimes. To demonstrate the distinct potentials of the coupled OPO system compared to conventional non-Hermitian systems, we present higher-order EPs with two OPOs, tunable Floquet EPs in a reconfigurable dynamic non-Hermitian system, and the generation of a squeezed vacuum around EPs, all of which are not easy to realize in other non-Hermitian platforms. We believe our results show that coupled OPOs are an outstanding non-Hermitian setting with unprecedented opportunities to realize nonlinear dynamical systems for enhanced sensing and quantum information processing. 
    more » « less