skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cranial anatomy of the Triassic rhynchosaur Mesosuchus browni based on computed tomography, with a discussion of the vomeronasal system and its deep history in Reptilia
Abstract The stem lineage of Archosauria is populated by a diverse fossil record that remains notably understudied relative to the crown clade. Prominent among these specimens is a beautifully preserved skull of the early mid-Triassic rhynchosaur Mesosuchus browni [Iziko South African Museum (SAM) 6536], whose phylogenetic position has considerable influence on patterns of pan-archosaurian cranial evolution. We used high-resolution, micro-computed tomography to re-examine the anatomy of this specimen, building on previous studies that were either limited to external observations or restricted to the braincase. A digital segmentation of the cranial elements and primary neurovascular canals of SAM-PK-6536 allows for expanded character scoring and constitutes a foundation for future comparative insights. Our data support the phylogenetically oldest instance of a pneumatized maxilla in a pan-archosaur, bringing the record of antorbital pneumatization into closer alignment with that of the neurocranium. The nasal cavity and primary palate of Mesosuchus includes a complex septomaxilla, a novel element anterior to the vomer, and is likely to have supported a well-developed vomeronasal system. The evolution of this system is discussed in terms of both phylogenetic pattern and how the skeletal architecture of Mesosuchus and other fossils could inform the signalling dynamics that pattern the vomeronasal system during development.  more » « less
Award ID(s):
1947001 1947025
PAR ID:
10562311
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford
Date Published:
Journal Name:
Zoological Journal of the Linnean Society
Volume:
201
Issue:
4
ISSN:
0024-4082
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Isolated pan-chelydrid turtle shell fragments are common in Late Cretaceous and early Paleocene sediments across western North America, but more complete and associated specimens are rare, obfuscating our understanding of the group’s early evolution. Here we describe a new genus and species,Tavachelydra stevensoni, of stem-chelydrid turtle from the early Paleocene of the Denver Formation (Danian, Puercan I and II) of Colorado based on complete shells, associated pelvic material, and referred cranial material. Our phylogenetic analysis placesT. stevensonias the immediate sister to crown chelydrids based on, among others, a purely ligamentous attachment of the plastron and carapace. The costiform process of the nuchal, an important character complex in chelydroid turtles, shows variation in either ending in peripheral II or III. TheT. stevensonimaterial was mostly found in laminated fine-grained deposits, suggesting this taxon inhabited ponded-water environments. The referred cranial material shows broad triturating surfaces indicating a durophagous diet, further underscoring durophagy as an important feeding strategy during the early Paleocene. 
    more » « less
  2. Abstract Recently, Yohe and Krell (The Anatomical Record, vol. 306:2765–2780) lamented the incongruence between genetics and morphology in the vomeronasal system of bats. Here, we studied 105 bat species from 19 families using histology, iodine‐enhanced computed tomography (CT), and/or micro‐CT. We focused on structural elements that support a functional peripheral vomeronasal receptor organ (vomeronasal organ [VNO]), together comprising the “vomeronasal complex.” Our results support prior studies that describe a functional VNO in most phyllostomid bats, miniopterids, and some mormoopids (most knownPteronotusspp.). All of these species (or congeners, at least) have vomeronasal nerves connecting the VNO with the brain and some intact genes related to a functional VNO. However, some bats have VNOs that lack a neuroepithelium and yet still possess elements that aid VNO function, such as a “capsular” morphology of the vomeronasal cartilages (VNCs), and even large venous sinuses, which together facilitate a vasomotor pump mechanism that can draw fluid into the VNO. We also show that ostensibly functionless VNOs of some bats are developmentally associated with ganglionic masses, perhaps involved in endocrine pathways. Finally, we demonstrate that the capsular VNC articulates with the premaxilla or maxilla, and that these bones bear visible grooves denoting the location of the VNC. Since these paraseptal grooves are absent in bats that have simpler (bar‐shaped or curved) VNCs, this trait could be useful in fossil studies. Variable retention of some but not all “functional” elements of the vomeronasal complex suggests diverse mechanisms of VNO loss among some bat lineages. 
    more » « less
  3. Abstract Due to the hierarchical structure of the tree of life, closely related species often resemble each other more than distantly related species; a pattern termed phylogenetic signal. Numerous univariate statistics have been proposed as measures of phylogenetic signal for single phenotypic traits, but the study of phylogenetic signal for multivariate data, as is common in modern biology, remains challenging. Here, we introduce a new method to explore phylogenetic signal in multivariate phenotypes. Our approach decomposes the data into linear combinations with maximal (or minimal) phylogenetic signal, as measured by Blomberg’s K. The loading vectors of these phylogenetic components or K-components can be biologically interpreted, and scatterplots of the scores can be used as a low-dimensional ordination of the data that maximally (or minimally) preserves phylogenetic signal. We present algebraic and statistical properties, along with 2 new summary statistics, KA and KG, of phylogenetic signal in multivariate data. Simulation studies showed that KA and KG have higher statistical power than the previously suggested statistic Km⁢u⁢l⁢t, especially if phylogenetic signal is low or concentrated in a few trait dimensions. In 2 empirical applications to vertebrate cranial shape (crocodyliforms and papionins), we found statistically significant phylogenetic signal concentrated in a few trait dimensions. The finding that phylogenetic signal can be highly variable across the dimensions of multivariate phenotypes has important implications for current maximum likelihood approaches to phylogenetic signal in multivariate data. 
    more » « less
  4. Abstract Despite documented ecomorphological shifts toward an herbivorous diet in several coelurosaurian lineages, the evolutionary tempo and mode of these changes remain poorly understood, hampered by sparse cranial materials for early representatives of major clades. This is particularly true for Therizinosauria, with representative crania best known for the late‐divergingErlikosaurus andrewsiand the early taxonJianchangosaurus yixianensis. Here we describe a series of new cranial bones ofFalcarius utahensis, the geologically oldest therizinosaurian from the Early Cretaceous Cedar Mountain Formation, Utah, United States. This new material provides the most complete understanding of the skull to date forFalcariusand frames the pattern and timing of cranial evolution in therizinosaurians and early coelurosaurians. Previously unknown elements include a well‐preserved maxilla, jugal, parietals, squamosal, laterosphenoids, and pterygoid. Computed tomography data differentiate the incisiform rostral dentary dentition from possible premaxillary teeth, the first in a therizinosaurian. Notable features include a primitive morphology of the jugal and frontoparietal complex shared with other early diverging taxa (e.g., tyrannosauroids,Incisivosaurus,Ornitholestes, Fukuivenator), and a large maxillary fenestra, convergent with troodontids. Additional specimens of previously known elements confirm their taxonomic utility and provide insight into intraspecific variation. Following patterns of other archosaurs, variable traits relate to the prominence of ridges and contours (likely associated with musculature) and the proportions of pneumatic features, whereas invariant traits correspond to the topology of bony contacts and major cranial nerves. Early, integrated evolution of the rostrum and adductor complex characterized early therizinosaurians, which was further modified alongside reduced paranasal complexity in later therizinosaurids. 
    more » « less
  5. Arundelemys dardeni is an Early Cretaceous paracryptodire known from a single, incomplete, but generally well-preserved skull. Phylogenetic hypotheses of paracryptodires often find Arundelemys dardeni as an early branching baenid. As such, it has a central role in understanding the early evolution of the successful clade Baenidae, which survived the Cretaceous–Paleogene mass extinction, as well as the diversification of Paracryptodira into its subclades, which recent research suggests to perhaps include helochelydrids, compsemydids, pleurosternids, and baenids. Computer tomography scans of the holotype material that were produced for the initial description of Arundelemeys dardeni reveal several errors in the initial anatomical description of the species, which we correct based on element-by-element segmentation. In addition, we provide entirely novel anatomical information, including descriptions of several previously undescribed cranial bones, the endosseous labyrinth, and the cranial scutes, the latter of which are unknown for most paracryptodires. We provide an interpretation of cranial scutes which homologizes the scutes of Arundelemys dardeni with those of other stem turtles. 
    more » « less