skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SspA is a transcriptional regulator of CRISPR adaptation in E. coli
Abstract The CRISPR integrases Cas1-Cas2 create immunological memories of viral infection by storing phage-derived DNA in CRISPR arrays, a process known as CRISPR adaptation. A number of host factors have been shown to influence adaptation, but the full pathway from infection to a fully integrated, phage-derived sequences in the array remains incomplete. Here, we deploy a new CRISPRi-based screen to identify putative host factors that participate in CRISPR adaptation in the Escherichia coli Type I-E system. Our screen and subsequent mechanistic characterization reveal that SspA, through its role as a global transcriptional regulator of cellular stress, is required for functional CRISPR adaptation. One target of SspA is H-NS, a known repressor of CRISPR interference proteins, but we find that the role of SspA on adaptation is not H-NS-dependent. We propose a new model of CRISPR-Cas defense that includes independent cellular control of adaptation and interference by SspA.  more » « less
Award ID(s):
2137692
PAR ID:
10562365
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Nucleic Acids Research
Volume:
53
Issue:
4
ISSN:
0305-1048
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Whiteson, Katrine (Ed.)
    ABSTRACT The opportunistic human pathogenPseudomonas aeruginosais naturally infected by a large class of temperate, transposable, Mu-like phages. We examined the genotypic and phenotypic diversity ofP. aeruginosaPA14 lysogen populations as they resolve clustered regularly interspaced short palindromic repeat(CRISPR) autoimmunity, mediated by an imperfect CRISPR match to the Mu-like DMS3 prophage. After 12 days of evolution, we measured a decrease in spontaneous induction in both exponential and stationary phase growth. Co-existing variation in spontaneous induction rates in the exponential phase depended on the way the coexisting strains resolved genetic conflict. Multiple mutational modes to resolve genetic conflict between host and phage resulted in coexistence in evolved populations of single lysogens that maintained CRISPR immunity to other phages and polylysogens that lost immunity completely. This work highlights a new dimension of the role of lysogenic phages in the evolution of their hosts.IMPORTANCEThe chronic opportunistic multi-drug-resistant pathogenPseudomonas aeruginosais persistently infected by temperate phages. We assess the contribution of temperate phage infection to the evolution of the clinically relevant strain UCBPP-PA14. We found that a low level of clustered regularly interspaced short palindromic repeat (CRISPR)-mediated self-targeting resulted in polylysogeny evolution and large genome rearrangements in lysogens; we also found extensive diversification in CRISPR spacers andcasgenes. These genomic modifications resulted in decreased spontaneous induction in both exponential and stationary phase growth, increasing lysogen fitness. This work shows the importance of considering latent phage infection in characterizing the evolution of bacterial populations. 
    more » « less
  2. Abstract Nucleoid Associated Proteins (NAPs) organize the bacterial chromosome within the nucleoid. The interaction of the NAP H-NS with DNA also represses specific host and xenogeneic genes. Previously, we showed that the bacteriophage T4 early protein MotB binds to DNA, co-purifies with H-NS/DNA, and improves phage fitness. Here we demonstrate using atomic force microscopy that MotB compacts the DNA with multiple MotB proteins at the center of the complex. These complexes differ from those observed with H-NS and other NAPs, but resemble those formed by the NAP-like proteins CbpA/Dps and yeast condensin. Fluorescent microscopy indicates that expression of motB in vivo, at levels like that during T4 infection, yields a significantly compacted nucleoid containing MotB and H-NS. motB overexpression dysregulates hundreds of host genes; ∼70% are within the hns regulon. In infected cells overexpressing motB, 33 T4 late genes are expressed early, and the T4 early gene repEB, involved in replication initiation, is up ∼5-fold. We postulate that MotB represents a phage-encoded NAP that aids infection in a previously unrecognized way. We speculate that MotB-induced compaction may generate more room for T4 replication/assembly and/or leads to beneficial global changes in host gene expression, including derepression of much of the hns regulon. 
    more » « less
  3. ABSTRACT Clustered regularly interspaced short palindromic repeat (CRISPR)-associated (CRISPR-Cas) systems are adaptive defense systems that protect bacteria and archaea from invading genetic elements. In Pseudomonas aeruginosa , quorum sensing (QS) induces the CRISPR-Cas defense system at high cell density when the risk of bacteriophage infection is high. Here, we show that another cue, temperature, modulates P. aeruginosa CRISPR-Cas. Increased CRISPR adaptation occurs at environmental (i.e., low) temperatures compared to that at body (i.e., high) temperature. This increase is a consequence of the accumulation of CRISPR-Cas complexes, coupled with reduced P. aeruginosa growth rate at the lower temperature, the latter of which provides additional time prior to cell division for CRISPR-Cas to patrol the cell and successfully eliminate and/or acquire immunity to foreign DNA. Analyses of a QS mutant and synthetic QS compounds show that the QS and temperature cues act synergistically. The diversity and level of phage encountered by P. aeruginosa in the environment exceed that in the human body, presumably warranting increased reliance on CRISPR-Cas at environmental temperatures. IMPORTANCE P. aeruginosa is a soil dwelling bacterium and a plant pathogen, and it also causes life-threatening infections in humans. Thus, P. aeruginosa thrives in diverse environments and over a broad range of temperatures. Some P. aeruginosa strains rely on the CRISPR-Cas adaptive immune system as a phage defense mechanism. Our discovery that low temperatures increase CRISPR adaptation suggests that the rarely occurring but crucial naive adaptation events may take place predominantly under conditions of slow growth, e.g., during the bacterium’s soil dwelling existence and during slow growth in biofilms. 
    more » « less
  4. Abstract Temperate phage can initiate lysis or lysogeny after infecting a bacterial host. The genetic switch between lysis and lysogeny is mediated by phage regulatory genes as well as host and environmental factors. Recently, a new class of decision switches was identified in phage of the SPbeta group, mediated by the extracellular release of small, phage-encoded peptides termed arbitrium. Arbitrium peptides can be taken up by bacteria prior to infection, modulating the decision switch in the event of a subsequent phage infection. Increasing the concentration of arbitrium increases the chance that a phage infection will lead to lysogeny, rather than lysis. Although prior work has centered on the molecular mechanisms of arbitrium-induced switching, here we focus on how selective pressures impact the benefits of plasticity in switching responses. In this work, we examine the possible advantages of near-term adaptation of communication-based decision switches used by the SPbeta-like group. We combine a nonlinear population model with a control-theoretic approach to evaluate the relationship between a putative phage reaction norm (i.e. the probability of lysogeny as a function of arbitrium) and the extent of phage reproduction at a near-term time horizon. We measure phage reproduction in terms of a cellular-level metric previously shown to enable comparisons of near-term phage fitness across a continuum from lysis to latency. We show the adaptive potential of communication-based lysis–lysogeny responses and find that optimal switching between lysis and lysogeny increases the near-term phage reproduction compared to fixed responses, further supporting both molecular- and model-based analyses of the putative benefits of this class of decision switches. We further find that plastic responses are robust to the inclusion of cellular-level stochasticity, variation in life history traits, and variation in resource availability. These findings provide further support to explore the long-term evolution of plastic decision systems mediated by extracellular decision-signaling molecules and the feedback between phage reaction norms and ecological context. 
    more » « less
  5. Parsek, Matthew (Ed.)
    ABSTRACT Histone-like nucleoid structuring (H-NS) and H-NS-like proteins serve as global gene silencers and work with antagonistic transcriptional activators (counter-silencers) to properly coordinate the expression of virulence genes in pathogenic bacteria. InBrucella, MucR has been proposed as a novel H-NS-like gene silencer, but direct experimental evidence is lacking. Here, we show that MucR serves as an H-NS-like silencer of theBrucella abortusgenes encoding the polar autotransporter adhesins BtaE and BmaC, the c-di-GMP-specific phosphodiesterase BpdB, and the quorum-sensing regulator BabR. We also demonstrate that the MarR-type transcriptional activator MdrA can displace MucR from thebtaEpromoter, supporting the existence of MucR counter-silencers inBrucella. Moreover, our chromatin immunoprecipitation (ChIP)-seq analysis identified 546 MucR enrichment peaks along the genome, including in the promoters of the genes encoding the Type IV secretion machinery and effectors and the quorum-sensing regulator VjbR. Importantly, MucR ChIP-seq peaks overlap with the previously described binding sites for the transcriptional activators VjbR, BvrR, and CtrA suggesting that these regulators serve as MucR counter-silencers and work in concert with MucR to coordinate virulence gene expression inBrucella. In addition, using chromosome conformation capture (Hi-C), we show that like H-NS inEscherichia coli, MucR alters the global structure of theBrucellanucleoid. Finally, a copy of theE. coli hnsrescues the distinctive growth defect and elevatedbtaEexpression of aB. abortus mucRmutant. Together, these findings solidify the role of MucR as a novel type of H-NS-like protein and suggest that MucR’s gene-silencing properties play a key role in virulence inBrucella. IMPORTANCEHistone-like nucleoid structuring (H-NS) and H-NS-like proteins coordinate host-associated behaviors in many pathogenic bacteria, often through forming silencer/counter-silencer pairs with signal-responsive transcriptional activators to tightly control gene expression.Brucellaand related bacteria do not encode H-NS or homologs of known H-NS-like proteins, and it is unclear if they have other proteins that perform analogous functions during pathogenesis. In this work, we provide compelling evidence for the role of MucR as a novel H-NS-like protein inBrucella. We show that MucR possesses many of the known functions attributed to H-NS and H-NS-like proteins, including the formation of silencer/counter-silencer pairs to control virulence gene expression and global structuring of the nucleoid. These results uncover a new role for MucR as a nucleoid structuring protein and support the importance of temporal control of gene expression inBrucellaand related bacteria. 
    more » « less