skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Learning operators between infinitely dimensional spaces is an important learning task arising in machine learning, imaging science, mathematical modeling and simulations, etc. This paper studies the nonparametric estimation of Lipschitz operators using deep neural networks. Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class. Under the assumption that the target operator exhibits a low dimensional structure, our error bounds decay as the training sample size increases, with an attractive fast rate depending on the intrinsic dimension in our estimation. Our assumptions cover most scenarios in real applications and our results give rise to fast rates by exploiting low dimensional structures of data in operator estimation. We also investigate the influence of network structures (e.g., network width, depth, and sparsity) on the generalization error of the neural network estimator and propose a general suggestion on the choice of network structures to maximize the learning efficiency quantitatively.  more » « less
Award ID(s):
2012652
PAR ID:
10562373
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Journal Name:
Journal of machine learning research
Volume:
25
ISSN:
1533-7928
Page Range / eLocation ID:
1-67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Raginsky, Maxim (Ed.)
    Learning operators between infinitely dimensional spaces is an important learning task arising in machine learning, imaging science, mathematical modeling and simulations, etc. This paper studies the nonparametric estimation of Lipschitz operators using deep neural networks. Non-asymptotic upper bounds are derived for the generalization error of the empirical risk minimizer over a properly chosen network class. Under the assumption that the target operator exhibits a low dimensional structure, our error bounds decay as the training sample size increases, with an attractive fast rate depending on the intrinsic dimension in our estimation. Our assumptions cover most scenarios in real applications and our results give rise to fast rates by exploiting low dimensional structures of data in operator estimation. We also investigate the influence of network structures (e.g., network width, depth, and sparsity) on the generalization error of the neural network estimator and propose a general suggestion on the choice of network structures to maximize the learning efficiency quantitatively. 
    more » « less
  2. The prosperity of deep learning and automated machine learning (AutoML) is largely rooted in the development of novel neural networks -- but what defines and controls the "goodness" of networks in an architecture space? Test accuracy, a golden standard in AutoML, is closely related to three aspects: (1) expressivity (how complicated functions a network can approximate over the training data); (2) convergence (how fast the network can reach low training error under gradient descent); (3) generalization (whether a trained network can be generalized from the training data to unseen samples with low test error). However, most previous theory papers focus on fixed model structures, largely ignoring sophisticated networks used in practice. To facilitate the interpretation and understanding of the architecture design by AutoML, we target connecting a bigger picture: how does the architecture jointly impact its expressivity, convergence, and generalization? We demonstrate the "no free lunch" behavior in networks from an architecture space: given a fixed budget on the number of parameters, there does not exist a single architecture that is optimal in all three aspects. In other words, separately optimizing expressivity, convergence, and generalization will achieve different networks in the architecture space. Our analysis can explain a wide range of observations in AutoML. Experiments on popular benchmarks confirm our theoretical analysis. Our codes are attached in the supplement. 
    more » « less
  3. null (Ed.)
    We consider the regression problem of estimating functions on $$ \mathbb{R}^D $$ but supported on a $ d $-dimensional manifold $$ \mathcal{M} ~~\subset \mathbb{R}^D $$ with $$ d \ll D $$. Drawing ideas from multi-resolution analysis and nonlinear approximation, we construct low-dimensional coordinates on $$ \mathcal{M} $$ at multiple scales, and perform multiscale regression by local polynomial fitting. We propose a data-driven wavelet thresholding scheme that automatically adapts to the unknown regularity of the function, allowing for efficient estimation of functions exhibiting nonuniform regularity at different locations and scales. We analyze the generalization error of our method by proving finite sample bounds in high probability on rich classes of priors. Our estimator attains optimal learning rates (up to logarithmic factors) as if the function was defined on a known Euclidean domain of dimension $ d $, instead of an unknown manifold embedded in $$ \mathbb{R}^D $$. The implemented algorithm has quasilinear complexity in the sample size, with constants linear in $ D $ and exponential in $ d $. Our work therefore establishes a new framework for regression on low-dimensional sets embedded in high dimensions, with fast implementation and strong theoretical guarantees. 
    more » « less
  4. Relying on prior knowledge accumulated from related tasks, meta-learning offers a powerful approach to learning a novel task from a limited number of training data. Recent approaches use a family of prior probability density functions or recurrent neural network models, whose parameters can be optimized by utilizing labeled data from the observed tasks. While these approaches have appealing empirical performance, expressiveness of their prior is relatively low, which limits generalization and interpretation of meta-learning. Aiming at expressive yet meaningful priors, this contribution puts forth a novel prior representation model that leverages the notion of algorithm unrolling. The key idea is to unroll the proximal gradient descent steps, where learnable piecewise linear functions are developed to approximate the desired proximal operators within tight theoretical error bounds established for both smooth and non-smooth proximal functions. The resultant multi-block neural network not only broadens the scope of learnable priors, but also enhances interpretability from an optimization viewpoint. Numerical tests conducted on few-shot learning datasets demonstrate markedly improved performance with flexible, visualizable, and understandable priors. 
    more » « less
  5. Quantifying dependence between high-dimensional random variables is central to statistical learning and inference. Two classical methods are canonical correlation analysis (CCA), which identifies maximally correlated projected versions of the original variables, and Shannon's mutual information, which is a universal dependence measure that also captures high-order dependencies. However, CCA only accounts for linear dependence, which may be insufficient for certain applications, while mutual information is often infeasible to compute/estimate in high dimensions. This work proposes a middle ground in the form of a scalable information-theoretic generalization of CCA, termed max-sliced mutual information (mSMI). mSMI equals the maximal mutual information between low-dimensional projections of the high-dimensional variables, which reduces back to CCA in the Gaussian case. It enjoys the best of both worlds: capturing intricate dependencies in the data while being amenable to fast computation and scalable estimation from samples. We show that mSMI retains favorable structural properties of Shannon's mutual information, like variational forms and identification of independence. We then study statistical estimation of mSMI, propose an efficiently computable neural estimator, and couple it with formal non-asymptotic error bounds. We present experiments that demonstrate the utility of mSMI for several tasks, encompassing independence testing, multi-view representation learning, algorithmic fairness, and generative modeling. We observe that mSMI consistently outperforms competing methods with little-to-no computational overhead. 
    more » « less