Abstract As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and threatens the present-day form, function, and viability of communities, infrastructure, and ecosystems. Determining the timing and nature of these tipping points is essential for effective climate adaptation planning. Here we present a multidisciplinary case study from Santa Barbara, California (USA), to identify potential climate change-related tipping points for various coastal systems. This study integrates numerical and statistical models of the climate, ocean water levels, beach and cliff evolution, and two soft sediment ecosystems, sandy beaches and tidal wetlands. We find that tipping points for beaches and wetlands could be reached with just 0.25 m or less of SLR (~ 2050), with > 50% subsequent habitat loss that would degrade overall biodiversity and ecosystem function. In contrast, the largest projected changes in socioeconomic exposure to flooding for five communities in this region are not anticipated until SLR exceeds 0.75 m for daily flooding and 1.5 m for storm-driven flooding (~ 2100 or later). These changes are less acute relative to community totals and do not qualify as tipping points given the adaptive capacity of communities. Nonetheless, the natural and human built systems are interconnected such that the loss of natural system function could negatively impact the quality of life of residents and disrupt the local economy, resulting in indirect socioeconomic impacts long before built infrastructure is directly impacted by flooding.
more »
« less
Maintaining human wellbeing as socio-environmental systems undergo regime shifts
Global environmental change is pushing many socio-environmental systems towards critical thresholds, where ecological systems’ states are on the precipice of tipping points and interventions are needed to navigate or avert impending transitions. Flickering, where a system vacillates between alternative stable states, is an early warning signal of transitions to alternative ecological regimes. However, while flickering may presage an ecological tipping point, these dynamics also pose unique challenges for human adaptation. We link an ecological model that can exhibit flickering to a model of human environmental adaptation to explore the impact of flickering on the utility of adaptive agents. When adaptive capacity is low, flickering causes wellbeing to decline disproportionately. As a result, flickering dynamics move forward the optimal timing of a transformational change that can secure wellbeing despite environmental variability. The implications of flickering on communities faced with desertification, fisheries collapse, and ecosystem change are explored as possible case studies. Flickering, driven in part by climate change and extreme events, may already be impacting communities. Our results suggest that governance interventions investing in adaptive capacity or facilitating transformational change before flickering arises could blunt the negative impact of flickering as socio-environmental systems pass through tipping points.
more »
« less
- Award ID(s):
- 2233983
- PAR ID:
- 10562477
- Publisher / Repository:
- Ecological Economics
- Date Published:
- Journal Name:
- Ecological Economics
- Volume:
- 221
- Issue:
- C
- ISSN:
- 0921-8009
- Page Range / eLocation ID:
- 108194
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract To ensure that cities and urban ecosystems support human wellbeing and overall quality of life we need conceptual frameworks that can connect different scientific disciplines as well as research and practice. In this perspective, we explore the potential of a traits framework for understanding social-ecological patterns, dynamics, interactions, and tipping points in complex urban systems. To do so, we discuss what kind of framing, and what research, that would allow traits to (1) link the sensitivity of a given environmental entity to different globally relevant pressures, such as land conversion or climate change to its social-ecological consequences; (2) connect to human appraisal and diverse bio-cultural sense-making through the different cues and characteristics people use to detect change or articulate value narratives, and (3) examine how and under what conditions this new approach may trigger, inform, and support decision making in land/resources management at different scales.more » « less
-
The speed and uncertainty of environmental change in the Anthropocene challenge the capacity of coevolving social–ecological–technological systems (SETs) to adapt or transform to these changes. Formal government and legal structures further constrain the adaptive capacity of our SETs. However, new, self-organized forms of adaptive governance are emerging at multiple scales in natural resource-based SETs. Adaptive governance involves the private and public sectors as well as formal and informal institutions, self-organized to fill governance gaps in the traditional roles of states. While new governance forms are emerging, they are not yet doing so rapidly enough to match the pace of environmental change. Furthermore, they do not yet possess the legitimacy or capacity needed to address disparities between the winners and losers from change. These emergent forms of adaptive governance appear to be particularly effective in managing complexity. We explore governance and SETs as coevolving complex systems, focusing on legal systems to understand the potential pathways and obstacles to equitable adaptation. We explore how governments may facilitate the emergence of adaptive governance and promote legitimacy in both the process of governance despite the involvement of nonstate actors, and its adherence to democratic values of equity and justice. To manage the contextual nature of the results of change in complex systems, we propose the establishment of long-term study initiatives for the coproduction of knowledge, to accelerate learning and synergize interactions between science and governance and to foster public science and epistemic communities dedicated to navigating transitions to more just, sustainable, and resilient futures.more » « less
-
Many complex dynamical systems in the real world, including ecological, climate, financial and power-grid systems, often show critical transitions, or tipping points, in which the system’s dynamics suddenly transit into a qualitatively different state. In mathematical models, tipping points happen as a control parameter gradually changes and crosses a certain threshold. Tipping elements in such systems may interact with each other as a network, and understanding the behaviour of interacting tipping elements is a challenge because of the high dimensionality originating from the network. Here, we develop a degree-based mean-field theory for a prototypical double-well system coupled on a network with the aim of understanding coupled tipping dynamics with a low-dimensional description. The method approximates both the onset of the tipping point and the position of equilibria with a reasonable accuracy. Based on the developed theory and numerical simulations, we also provide evidence for multistage tipping point transitions in networks of double-well systems.more » « less
-
Land-based transport corridors and related infrastructure are increasingly extending into and across the Arctic in support of resource development and population growth, causing large-scale cumulative changes to northern socio-ecological systems. These changes include the increased mobility of people, goods and resources, and environmental impacts on landscapes and ecosystems as the human footprint reaches remote, unindustrialized regions. Arctic climate change is also generating new challenges for the construction and maintenance of these transport systems, requiring adaptive engineering solutions as well as community resilience. In this review article, we consider the complex entanglements between humans, the environment, and land transportation infrastructure in the North and illustrate these interrelations by way of seven case studies: the Baikal–Amur Mainline, Bovanenkovo Railway, Alaska–Canada Highway, Inuvik–Tuktoyatuk Highway, Alaska Railroad, Hudson Bay Railway, and proposed railways on Baffin Island, Canada. As new infrastructure is built and anticipated across the circumpolar North, there is an urgent need for an integrated socio-ecological approach to impact assessment. This would include full consideration of Indigenous knowledge and concerns, collaboration with local communities and user groups in assessment, planning and monitoring, and evaluation of alternative engineering designs to contend with the impacts of climate change in the decades ahead.more » « less
An official website of the United States government

