Post-consumer polyethylene terephthalate (PET) was hydrolyzed in pure water over a wide range of temperatures (190−400 °C) and pressures (1−35 MPa) to produce terephthalic acid (TPA). Solid or molten PET was subjected to water as a saturated vapor, superheated vapor, saturated liquid, compressed liquid, and supercritical fluid. The highest TPA yields were observed for the hydrolysis of molten PET in saturated liquid water. Isothermal and non-isothermal hydrolysis of PET was also explored. Rapidly heating the reactor contents at about 5−10 °C/s (“fast” hydrolysis) led to high TPA yields, as did isothermal PET hydrolysis, but within 1 min instead of 30 min. Notably, these conditions resulted in the lowest environmental energy impact metric observed to date for uncatalyzed hydrolysis.
more »
« less
This content will become publicly available on August 1, 2025
Changes in the Chemical Composition of Polyethylene Terephthalate under UV Radiation in Various Environmental Conditions
Polyethylene terephthalate has been widely used in the packaging industry. Degraded PET micro(nano)plastics could pose public health concerns following release into various environments. This study focuses on PET degradation under ultraviolet radiation using the NIST SPHERE facility at the National Institute of Standards and Technology in saturated humidity (i.e., ≥95% relative humidity) and dry conditions (i.e., ≤5% relative humidity) with varying temperatures (30 °C, 40 °C, and 50 °C) for up 20 days. ATR-FTIR was used to characterize the chemical composition change of degraded PET as a function of UV exposure time. The results showed that the cleavage of the ester bond at peak 1713 cm−1 and the formation of the carboxylic acid at peak 1685 cm−1 were significantly influenced by UV radiation. Furthermore, the formation of carboxylic acid was considerably higher at saturated humidity and 50 °C conditions compared with dry conditions. The ester bond cleavage was also more pronounced in saturated humidity conditions. The novelty of this study is to provide insights into the chemical degradation of PET under environmental conditions, including UV radiation, humidity, and temperature. The results can be used to develop strategies to reduce the environmental impact of plastic pollution.
more »
« less
- Award ID(s):
- 2022887
- PAR ID:
- 10562588
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Polymers
- Volume:
- 16
- Issue:
- 16
- ISSN:
- 2073-4360
- Page Range / eLocation ID:
- 2249
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We report conversion of esters to thioesters via selective C–O bond cleavage/weak C–S bond formation under transition-metal-free conditions. The method is notable for a general and practical transition-metal-free system, broad substrate scope and excellent functional group tolerance. The strategy was successfully deployed in late-stage thioesterification, site-selective cross-coupling/thioesterification/decarbonylation and easy-to-handle gram scale thioesterification. Selectivity and computational studies were performed to gain insight into the formation of weak C–S bonds by C–O bond cleavage, which contrasts with the traditional trend of nucleophilic additions to carboxylic acid derivatives.more » « less
-
Abstract Hydrodeoxygenation chemistries play a key role in the upgrading of biomass‐derived feedstocks. Among these, the removal of targeted hydroxyl groups through selective C−O bond cleavage from molecules containing multiple functionalities over heterogeneous catalysts has shown to be a challenge. Herein, we report a highly selective and stable heterogeneous catalyst for hydrodeoxygenation of tartaric acid to succinic acid. The catalyst consists of reduced Mo5+centers promoted by palladium, which facilitate selective C−O bond cleavage, while leaving intact carboxylic acid end groups. Stable catalytic performance over multiple cycles is demonstrated. This catalytic system opens up opportunities for selective processing of biomass‐derived sugar acids with a high degree of chemical functionality.more » « less
-
The high bond dissociation energy of C–C σ-bonds presents a challenge to chemical conversions in organic synthesis, polymer degradation, and biomass conversion that require chemoselective C–C bond cleavage at room temperature. Dye-sensitized photoelectrochemical cells (DSPECs) incorporating molecular organic dyes could offer a means of using renewable solar energy to drive these types of energetically demanding chemoselective C–C bond cleavage reactions. This study reports the solar light-driven activation of a bicyclic aminoxyl mediator to achieve C–C bond cleavage in the aryl-ether linkage of a lignin model compound (LMC) at room temperature using a donor–π-conjugated bridge–acceptor (D–π–A) organic dye-based DSPEC system. Mesoporous TiO 2 photoanode surfaces modified with 5-[4-(diphenylamino)phenyl]thiophene-2-cyanoacrylic acid (DPTC) D–π–A organic dye were investigated along with a bicyclic aminoxyl radical mediator (9-azabicyclo[3,3,1]nonan-3-one-9-oxyl, KABNO) in solution with and without the presence of LMC. Photophysical studies of DPTC with KABNO showed intermolecular energy/electron transfer under 1 sun illumination (100 mW cm −2 ). Under illumination, the D–π–A type DPTC sensitized TiO 2 photoanodes facilitate the generation of the reactive oxoammonium species KABNO+ as a strong oxidizing agent, which is required to drive the oxidative C–C bond cleavage of LMC. The photoelectrochemical oxidative reaction in a complete DSPEC with KABNO afforded C–C bond cleavage products 2-(2-methoxyphenoxy)acrylaldehyde (94%) and 2,6-dimethoxy-1,4-benzoquinone (66%). This process provides a first report utilizing a D–π–A type organic dye in combination with a bicyclic nitroxyl radical mediator for heterogeneous photoelectrolytic oxidative cleavage of C–C σ-bonds, modeled on those found in lignin, at room temperature.more » « less
-
Amides are of fundamental interest in many fields of chemistry involving organic synthesis, chemical biology and biochemistry. Here, we report the first catalytic Buchwald-Hartwig coupling of both common esters and amides by highly selective C(acyl)–X (X = O, N) cleavage to rapidly access aryl amide functionality via crosscoupling strategy. Reactions are promoted by versatile, easily prepared, well-defined Pd-PEPPSI type precatalysts, proceed in good to excellent yields and with excellent chemoselectivity for the acyl bond cleavage. The method is user friendly because it employs commercially-available, moisture- and air-stable precatalysts. Notably, for the first time we demonstrate selective C(acyl)–N and C(acyl)–O cleavage/Buchwald-Hartwig amination under the same reaction conditions, which allows for streamlining amide synthesis by avoiding restriction to a particular acyl metal precursor. Of broad interest, this study opens the door to using a family of well-defined Pd(II)-NHC precatalysts bearing pyridine ͞throw-away ligands for the selective C-acyl–amination of bench-stable carboxylic acid derivatives.more » « less