Real-time embedded systems perform many important functions in the modern world. A standard way to tolerate faults in these systems is with Byzantine fault-tolerant (BFT) state machine replication (SMR), in which multiple replicas execute the same software and their outputs are compared by the actuators. Unfortunately, traditional BFT SMR protocols areslow, requiring replicas to exchange sensor data back and forth over multiple rounds in order to reach agreement before each execution. The state of the art in reducing the latency of BFT SMR iseager execution, in which replicas execute on data from different sensors simultaneously on different processor cores. However, this technique results in 3–5× higher computation overheads compared to traditional BFT SMR systems, significantly limiting schedulability. We presentCrossTalk, a new BFT SMR protocol that leverages the prevalence of redundant switched networks in embedded systems to reduce latency without added computation. The key idea is to use specific algorithms to move messages between redundant network planes (which many systems already possess) as the messages travel from the sensors to the replicas. As a result,CrossTalkcan ensure agreementautomaticallyin the network, avoiding the need for any communication between replicas. Our evaluation shows thatCrossTalkimproves schedulability by 2.13–4.24× over the state of the art. Moreover, in a NASA simulation of a real spaceflight mission,CrossTalktolerates more faults than the state of the art while using nearly 3× less processor time.
more »
« less
Rashnu: Data-Dependent Order-Fairness
Distributed data management systems use state Machine Replication (SMR) to provide fault tolerance. The SMR algorithm enables Byzantine Fault-Tolerant (BFT) protocols to guarantee safety and liveness despite the malicious failure of nodes. However, SMR does not prevent the adversarial manipulation of the order of transactions, where the order assigned by a malicious leader differs from the order in that transactions are received from clients. Whileorder-fairnesshas been recently studied in a few protocols, such protocols rely on synchronized clocks, suffer from liveness issues, or incur significant performance overhead. This paper presentsRashnu, a high-performance fair ordering protocol. Rashnu is motivated by the fact that fair ordering among two transactions is needed only when both transactions access a shared resource. Based on this observation, we define the notion ofdata-dependent order fairnesswhere replicas capture only the order of data-dependent transactions and the leader uses these orders to propose a dependency graph that represents fair ordering among transactions. Replicas then execute transactions using the dependency graph, resulting in the parallel execution of independent transactions. We implemented a prototype of Rashnu where our experimental evaluation reveals the low overhead of providing order-fairness in Rashnu.
more »
« less
- Award ID(s):
- 2104882
- PAR ID:
- 10562686
- Publisher / Repository:
- VLDB
- Date Published:
- Journal Name:
- Proceedings of the VLDB Endowment
- Volume:
- 17
- Issue:
- 9
- ISSN:
- 2150-8097
- Page Range / eLocation ID:
- 2335 to 2348
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Byzantine fault-tolerant state machine replication (SMR) protocols, such as PBFT, HotStuff, and Jolteon, are essential for modern blockchain technologies. However, they are challenging to implement correctly because they have to deal with any unexpected message from byzantine peers and ensure safety and liveness at all times. Many formal frameworks have been developed to verify the safety of SMR implementations, but there is still a gap in the verification of their liveness. Existing liveness proofs are either limited to the network level or do not cover popular partially synchronous protocols. We introduce LiDO, a consensus model that enables the verification of both safety and liveness of implementations through refinement. We observe that current consensus models cannot handle liveness because they do not include a pacemaker state. We show that by adding a pacemaker state to the LiDO model, we can express the liveness properties of SMR protocols as a few safety properties that can be easily verified by refinement proofs. Based on our LiDO model, we provide mechanized safety and liveness proofs for both unpipelined and pipelined Jolteon in Coq. This is the first mechanized liveness proof for a byzantine consensus protocol with non-trivial optimizations such as pipelining.more » « less
-
Permissioned Blockchain systems rely mainly on Byzantine fault-tolerant protocols to establish consensus on the order of transactions. While Byzantine fault-tolerant protocols mostly guarantee consistency (safety) in an asynchronous network using 3f+1 machines to overcome the simultaneous malicious failure of any f nodes, in many systems, e.g., blockchain systems, the number of available nodes (resources) is much more than 3f + 1. To utilize such extra resources, in this paper we introduce a model that leverages transaction parallelism by partitioning the nodes into clusters (partitions) and processing independent transactions on different partitions simultaneously. The model also shards the blockchain ledger, assigns different shards of the blockchain ledger to different clusters, and includes both intra-shard and cross-shard transactions. Since more than one cluster is involved in each cross-shard transaction, the ledger is formed as a directed acyclic graph.more » « less
-
Alistarh, Dan (Ed.)In contrast to proof-of-work replication, Byzantine quorum systems maintain consistency across replicas with higher throughput, modest energy consumption, and deterministic liveness guarantees. If complemented with heterogeneous trust and open membership, they have the potential to serve as blockchains backbone. This paper presents a general model of heterogeneous quorum systems where each participant can declare its own quorums, and captures the consistency, availability and inclusion properties of these systems. In order to support open membership, it then presents reconfiguration protocols for heterogeneous quorum systems including joining and leaving of a process, and adding and removing of a quorum, and further, proves their correctness in the face of Byzantine attacks. The design of the protocols is informed by the trade-offs that the paper proves for the properties that reconfigurations can preserve. The paper further presents a graph characterization of heterogeneous quorum systems, and its application for reconfiguration optimization.more » « less
-
This paper presents Rolis, a new speedy and fault-tolerant replicated multi-core transactional database system. Rolis's aim is to mask the high cost of replication by ensuring that cores are always doing useful work and not waiting for each other or for other replicas. Rolis achieves this by not mixing the multi-core concurrency control with multi-machine replication, as is traditionally done by systems that use Paxos to replicate the transaction commit protocol. Instead, Rolis takes an "execute-replicate-replay" approach. Rolis first speculatively executes the transaction on the leader machine, and then replicates the per-thread transaction log to the followers using a novel protocol that leverages independent Paxos instances to avoid coordination, while still allowing followers to safely replay. The execution, replication, and replay are carefully designed to be scalable and have nearly zero coordination overhead across cores. Our evaluation shows that Rolis can achieve 1.03M TPS (transactions per second) on the TPC-C workload, using a 3-replica setup where each server has 32 cores. This throughput result is orders of magnitude higher than traditional software approaches we tested (e.g., 2PL), and is comparable to state-of-the-art, fault-tolerant, in-memory storage systems built using kernel bypass and advanced networking hardware, even though Rolis runs on commodity machines.more » « less