Models of well-mixed chemical reaction networks (CRNs) have provided a solid foundation for the study of programmable molecular systems, but the importance of spatial organization in such systems has increasingly been recognized. In this paper, we explore an alternative chemical computing model introduced by Qian & Winfree in 2014, the surface CRN, which uses molecules attached to a surface such that each molecule only interacts with its immediate neighbours. Expanding on the constructions in that work, we first demonstrate that surface CRNs can emulate asynchronous and synchronous deterministic cellular automata and implement continuously active Boolean logic circuits. We introduce three new techniques for enforcing synchronization within local regions, each with a different trade-off in spatial and chemical complexity. We also demonstrate that surface CRNs can manufacture complex spatial patterns from simple initial conditions and implement interesting swarm robotic behaviours using simple local rules. Throughout all example constructions of surface CRNs, we highlight the trade-off between the ability to precisely place molecules and the ability to precisely control molecular interactions. Finally, we provide a Python simulator for surface CRNs with an easy-to-use web interface, so that readers may follow along with our examples or create their own surface CRN designs.
more »
« less
This content will become publicly available on June 18, 2025
Computing Threshold Circuits with Bimolecular Void Reactions in Step Chemical Reaction Networks
Step Chemical Reaction Networks (step CRNs) are an augmentation of the Chemical Reaction Network (CRN) model where additional species may be introduced to the system in a sequence of “steps.” We study step CRN systems using a weak subset of reaction rules, void rules, in which molecular species can only be deleted. We demonstrate that step CRNs with only void rules of size (2,0) can simulate threshold formulas (TFs) under linear resources. These limited systems can also simulate threshold circuits (TCs) by modifying the volume of the system to be exponential. We then prove a matching exponential lower bound on the required volume for simulating threshold circuits in a step CRN with (2,0)-size rules under a restricted gate-wise simulation, thus showing our construction is optimal for simulating circuits in this way.
more »
« less
- Award ID(s):
- 2329918
- PAR ID:
- 10562738
- Publisher / Repository:
- Springer Nature
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chemical reaction networks (CRNs) are an important tool for molecular programming. This field is rapidly expanding our ability to deploy computer programs into biological systems for various applications. However, CRNs are also difficult to work with due to their massively parallel nature, leading to the need for higher-level languages that allow for more straightforward computation with CRNs. Recently, research has been conducted into various higher-level languages for deterministic CRNs but modeling CRN parallelism, managing error accumulation, and finding natural CRN representations are ongoing challenges. We introduce Reactamole, a higher-level language for deterministic CRNs that utilizes the functional reactive programming (FRP) paradigm to represent CRNs as a reactive dataflow network. Reactamole equates a CRN with a functional reactive program, implementing the key primitives of the FRP paradigm directly as CRNs. The functional nature of Reactamole makes reasoning about molecular programs easier, and its strong static typing allows us to ensure that a CRN is well-formed by virtue of being well-typed. In this paper, we describe the design of Reactamole and how we use CRNs to represent the common datatypes and operations found in FRP. We demonstrate the potential of this functional reactive approach to molecular programming by giving an extended example where a CRN is constructed using FRP to modulate and demodulate an amplitude-modulated signal. We also show how Reactamole can be used to specify abstract CRNs whose structure depends on the reactions and species of its input, allowing users to specify more general CRN behaviors.more » « less
-
Chemical reactions that couple to systems that phase separate have been implicated in diverse contexts from biology to materials science. However, how a particular set of chemical reactions (chemical reaction network, CRN) would affect the behaviours of a phase separating system is difficult to fully predict theoretically. In this paper, we analyse a mean field theory coupling CRNs to a combined system of phase separating and non-phase separating materials and analyse how the properties of the CRNs affect different classes of non-equilibrium behaviour: microphase separation or temporally oscillating patterns. We examine the problem of achieving microphase separated condensates by statistical analysis of the Jacobians, of which the most important motifs are negative feedback of the phase separating component and combined inhibition/activation by the non-phase separating components. We then identify CRN motifs that are likely to yield microphase by examining randomly generated networks and parameters. Molecular sequestration of the phase separating motif is shown to be the most robust towards yielding microphase separation. Subsequently, we find that dynamics of the phase separating species is promoted most easily by inducing oscillations in the diffusive components coupled to the phase separating species. Our results provide guidance towards the design of CRNs that manage the formation, dissolution and organization of compartments.more » « less
-
Understanding the algorithmic behaviors that are in principle realizable in a chemical system is necessary for a rigorous understanding of the design principles of biological regulatory networks. Further, advances in synthetic biology herald the time when we will be able to rationally engineer complex chemical systems and when idealized formal models will become blueprints for engineering. Coupled chemical interactions in a well-mixed solution are commonly formalized as chemical reaction networks (CRNs). However, despite the widespread use of CRNs in the natural sciences, the range of computational behaviors exhibited by CRNs is not well understood. Here, we study the following problem: What functions f : ℝ k → ℝ can be computed by a CRN, in which the CRN eventually produces the correct amount of the “output” molecule, no matter the rate at which reactions proceed? This captures a previously unexplored but very natural class of computations: For example, the reaction X 1 + X 2 → Y can be thought to compute the function y = min ( x 1 , x 2 ). Such a CRN is robust in the sense that it is correct whether its evolution is governed by the standard model of mass-action kinetics, alternatives such as Hill-function or Michaelis-Menten kinetics, or other arbitrary models of chemistry that respect the (fundamentally digital) stoichiometric constraints (what are the reactants and products?). We develop a reachability relation based on a broad notion of “what could happen” if reaction rates can vary arbitrarily over time. Using reachability, we define stable computation analogously to probability 1 computation in distributed computing and connect it with a seemingly stronger notion of rate-independent computation based on convergence in the limit t → ∞ under a wide class of generalized rate laws. Besides the direct mapping of a concentration to a nonnegative analog value, we also consider the “dual-rail representation” that can represent negative values as the difference of two concentrations and allows the composition of CRN modules. We prove that a function is rate-independently computable if and only if it is piecewise linear (with rational coefficients) and continuous (dual-rail representation), or non-negative with discontinuities occurring only when some inputs switch from zero to positive (direct representation). The many contexts where continuous piecewise linear functions are powerful targets for implementation, combined with the systematic construction we develop for computing these functions, demonstrate the potential of rate-independent chemical computation.more » « less
-
Mendes, Pedro (Ed.)Biochemical interactions in systems and synthetic biology are often modeled with chemical reaction networks (CRNs). CRNs provide a principled modeling environment capable of expressing a huge range of biochemical processes. In this paper, we present a software toolbox, written in Python, that compiles high-level design specifications represented using a modular library of biochemical parts, mechanisms, and contexts to CRN implementations. This compilation process offers four advantages. First, the building of the actual CRN representation is automatic and outputs Systems Biology Markup Language (SBML) models compatible with numerous simulators. Second, a library of modular biochemical components allows for different architectures and implementations of biochemical circuits to be represented succinctly with design choices propagated throughout the underlying CRN automatically. This prevents the often occurring mismatch between high-level designs and model dynamics. Third, high-level design specification can be embedded into diverse biomolecular environments, such as cell-free extracts and in vivo milieus. Finally, our software toolbox has a parameter database, which allows users to rapidly prototype large models using very few parameters which can be customized later. By using BioCRNpyler, users ranging from expert modelers to novice script-writers can easily build, manage, and explore sophisticated biochemical models using diverse biochemical implementations, environments, and modeling assumptions.more » « less