skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The FENIKS Survey: Spectroscopic Confirmation of Massive Quiescent Galaxies at z~3-5
The measured ages of massive, quiescent galaxies at z∼3-4 imply that massive galaxies quench as early as z~6. While the number of spectroscopic confirmations of quiescent galaxies at z<3 has increased over the years, there are only a handful at z> 3.5. We report spectroscopic redshifts of one secure (z=3.757) and two tentative (z=3.336 and z=4.673) massive quiescent galaxies with 11 hr of Keck/MOSFIRE K-band observations. Our candidates were selected from the FLAMINGOS-2 Extragalactic Near-Infrared K-band Split (FENIKS) survey, which uses deep Gemini/Flamingos-2 Kb/Kr imaging optimized for increased sensitivity to the characteristic red colors of galaxies at z>3 with a strong Balmer/4000 Å break. The rest-frame UVJ and ugi colors of three out of four quiescent candidates are consistent with 1-2 Gyr old stellar populations. This places these galaxies as the oldest objects at these redshifts, and challenges the notion that quiescent galaxies at z>3 are all recently quenched, post-starburst galaxies. Our spectroscopy shows that the other quiescent-galaxy candidate is a broad-line active galactic nucleus (z=3.594) with strong, redshifted Hbeta+[OIII] emission with a velocity offset >1000 km/s, indicative of a powerful outflow. The star formation history of our highest redshift candidate suggests that its progenitor was already in place by z~7-11, reaching ∼10^11 M⊙ by z~8. These observations reveal the limit of what is possible with deep near-infrared photometry and targeted spectroscopy from the ground and demonstrate that secure spectroscopic confirmation of quiescent galaxies at z>4 is feasible only with JWST.  more » « less
Award ID(s):
2009442 2009632
PAR ID:
10562794
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Astrophysical Journal
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
978
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
90
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We calibrate and validate different methods of rest-frame color-color selection to identify galaxies in active star-forming and quiescent stages of their evolution. Our method is similar to the widely-used UVJ color-color diagram, which is an effective way to distinguish between quiescent and star-forming galaxies using their rest-frame U-V and V-J colors. UVJ colors suffer known systematics, and at z > 4 the method must be extrapolated because the rest-frame J-band moves beyond the coverage of the deepest bandpasses (typically IRAC 4.5 µm). This leads to biases: for example, spectroscopic campaigns have shown that UVJ-quiescent samples include ~10-30% contamination from galaxies with significant amounts of star formation. Alternative selection methods will be important not just to mitigate these biases, but also in the JWST era where NIRCam coverage is also limited to ~5 µm . In this poster, we present calibrations of alternative rest-frame filter combinations that are applicable for galaxies at redshifts z = 4 - 6. We apply our method to a stellar mass-limited sample of galaxies at 4 < z < 6 from the FLAMINGOS-2 Extragalactic Near-Infrared K-Split (FENIKS) survey. FENIKS is a deep (23.1 - 24.5 AB mag) survey employing two novel filters which split the Ks band ( λc = 2.2 µm) K-blue and K-red filters ( λc = 1.9 and 2.3 µm, respectively), allowing for finer sampling of the Balmer/4000 Å break of galaxies with evolved populations. We quantify the improvement in the selection of quiescent and star-forming galaxies using the alternative color-color selection methods. Furthermore, we investigate correlations between galaxy properties and their rest-frame colors, in particular examining purity and completeness of these selection methods. Finally, we explore the above for a wide range of synthetic filter combinations to inform accurate selections of various galaxy populations and rule out unphysical areas of parameter space for these populations. 
    more » « less
  2. We examine the quiescent fractions of massive galaxies in six z>3 spectroscopically confirmed protoclusters in the COSMOS field, one of which is newly confirmed and presented here. We report the spectroscopic confirmation of MAGAZ3NE J100143+023021 at by the Massive Ancient Galaxies At z>3 NEar-infrared (MAGAZ3NE) survey. MAGAZ3NE J100143+023021 contains a total of 79 protocluster members (28 spectroscopic and 51 photometric). Three spectroscopically confirmed members are star-forming ultramassive galaxies (UMGs; >11), the most massive of which has . Combining Keck/MOSFIRE spectroscopy and the COSMOS2020 photometric catalog, we use a weighted Gaussian kernel density estimator to map the protocluster and measure its total mass in the dense "core" region. For each of the six COSMOS protoclusters, we compare the quiescent fraction to the status of the central UMG as star-forming or quiescent. We observe that galaxies in these protoclusters appear to obey galactic conformity: Elevated quiescent fractions are found in protoclusters with UVJ-quiescent UMGs and low quiescent fractions are found in protoclusters containing UVJ star-frming UMGs. This correlation of star formation/quiescence in UMGs and the massive galaxies nearby in these protoclusters is the first evidence for the existence of galactic conformity at z>3. Despite disagreements over mechanisms behind conformity at low redshifts, its presence at these early cosmic times would provide strong constraints on the physics proposed to drive galactic conformity. 
    more » « less
  3. Abstract In this work, we publish stellar velocity dispersions, sizes, and dynamical masses for eight ultramassive galaxies (UMGs; log ( M * / M ⊙ ) > 11), z ≳ 3) from the Massive Ancient Galaxies At z > 3 NEar-infrared (MAGAZ3NE) Survey, more than doubling the number of such galaxies with velocity dispersion measurements at this epoch. Using the deep Keck/MOSFIRE and Keck/NIRES spectroscopy of these objects in the H and K bandpasses, we obtain large velocity dispersions of ∼400 km s −1 for most of the objects, which are some of the highest stellar velocity dispersions measured and ∼40% larger than those measured for galaxies of similar mass at z ∼ 1.7. The sizes of these objects are also smaller by a factor of 1.5–3 compared to this same z ∼ 1.7 sample. We combine these large velocity dispersions and small sizes to obtain dynamical masses. The dynamical masses are similar to the stellar masses of these galaxies, consistent with a Chabrier initial mass function (IMF). Considered alongside previous studies of massive quiescent galaxies across 0.2 < z < 4.0, there is evidence for an evolution in the relation between the dynamical mass–stellar mass ratio and velocity dispersion as a function of redshift. This implies an IMF with fewer low-mass stars (e.g., Chabrier IMF) for massive quiescent galaxies at higher redshifts in conflict with the bottom-heavy IMF (e.g., Salpeter IMF) found in their likely z ∼ 0 descendants, though a number of alternative explanations such as a different dynamical structure or significant rotation are not ruled out. Similar to data at lower redshifts, we see evidence for an increase of IMF normalization with velocity dispersion, though the z ≳ 3 trend is steeper than that for z ∼ 0.2 early-type galaxies and offset to lower dynamical-to-stellar mass ratios. 
    more » « less
  4. We present a new rest-frame color–color selection method using synthetic us − gs and gs − is, (ugi)s colors to identify star-forming and quiescent galaxies. Our method is similar to the widely used U − V versus V − J (UVJ) diagram. However, UVJ suffers known systematics. Spectroscopic campaigns have shown that UVJ-selected quiescent samples at z ≳ 3 include ∼10%–30% contamination from galaxies with dust-obscured star formation and strong emission lines. Moreover, at z > 3, UVJ colors are extrapolated because the rest-frame band shifts beyond the coverage of the deepest bandpasses at <5 μm (typically Spitzer/IRAC 4.5 μm or future JWST/NIRCam observations). We demonstrate that (ugi)s offers improvements to UVJ at z > 3, and can be applied to galaxies in the JWST era. We apply (ugi)s selection to galaxies at 0.5 < z < 6 from the (observed) 3D-HST and UltraVISTA catalogs, and to the (simulated) JAGUAR catalogs. We show that extrapolation can affect (V − J)0 color by up to 1 mag, but changes $${({g}_{s}-{i}_{s})}_{0}$$ color by ≤0.2 mag, even at z ≃ 6. While (ugi)s-selected quiescent samples are comparable to UVJ in completeness (both achieve ∼85%–90% at z = 3–3.5), (ugi)s reduces contamination in quiescent samples by nearly a factor of 2, from ≃35% to ≃17% at z = 3, and from ≃60% to ≃33% at z = 6. This leads to improvements in the true-to-false-positive ratio (TP/FP), where we find TP/FP ≳2.2 for (ugi)s at z ≃ 3.5 − 6, compared to TP/FP < 1 for UVJ-selected samples. This indicates that contaminants will outnumber true quiescent galaxies in UVJ at these redshifts, while (ugi)s will provide higher-fidelity samples. 
    more » « less
  5. Abstract We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin 2 at 2 mm. Twelve of 13 detections above 5 σ are attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of 〈 z 2 mm 〉 = 3.6 − 0.3 + 0.4 primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources at z > 3 and 38% ± 12% of sources at z > 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs ( z < 3) are far more numerous than those at z > 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300 M ⊙ yr −1 and a relative rarity of ∼10 −5 Mpc −3 contribute ∼30% to the integrated star formation rate density at 3 < z < 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies at z > 2. Analysis of MORA sources’ spectral energy distributions hint at steeper empirically measured dust emissivity indices than reported in typical literature studies, with 〈 β 〉 = 2.2 − 0.4 + 0.5 . The MORA survey represents an important step in taking census of obscured star formation in the universe’s first few billion years, but larger area 2 mm surveys are needed to more fully characterize this rare population and push to the detection of the universe’s first dusty galaxies. 
    more » « less