Abstract Science, technology, engineering, and mathematics (STEM) education workshops and programs play a key role in promoting early exposure to scientific applications and questions. Such early engagement leads to growing not only passion and interest in science, but it also leads to skill development through hands-on learning and critical thinking activities. Integrating physiology and engineering together is necessary especially to promote health technology awareness and introduce the young generation to areas where innovation is needed and where there is no separation between health-related matters and engineering methods and applications. To achieve this, we created a workshop aimed at K-12 (grades 9–11) students as part of the Summer Youth Programs at Michigan Technological University. The aim of this workshop was to expose students to how engineering concepts and methods translate into health- and medicine-related applications and cases. The program consisted of a total of 15 h and was divided into three sections over a period of 2 weeks. It involved a combination of theoretical and hands-on guided activities that we developed. At the end of the workshop, the students were provided a lesson or activity-specific assessment sheet and a whole workshop-specific assessment sheet to complete. They rated the programs along a 1–5 Likert scale and provided comments and feedback on what can be improved in the future. Students rated hands-on activities the highest in comparison with case studies and individual independent research. Conclusively, this STEM summer-youth program was a successful experience with many opportunities that will contribute to the continued improvement of the workshop in the future.
more »
« less
A participatory approach to iteratively adapting game design workshops to empower autistic youth
Introduction: Autistic people face systemic barriers to fair employment. Informal learning may promote the self-determination transition-age autistic youth need to overcome and/or transform these barriers. This report focuses on the iterative process of developing video game design workshops guided by feedback from autistic students about instructional strategies they found engaging. This study is part of a three-year-long NSF-funded program of research that seeks to empower autistic youth to move toward successful careers by teaching educators how to more effectively guide them. Methods: In the Summer of 2021, educators at an award-winning NYC-based, not-for-profit, education program, Tech Kids Unlimited (TKU) collaborated with researchers, including autistic students, to iteratively develop and assess two online game design workshops for transition-age autistic youth. Participants selected which workshop they were available for (Workshop 1: n = 18; M age = 16.72 years; Workshop 2: n = 16; M age = 16.56 years). Students in Workshop 2 had more varied support needs and were less motivated to learn video game design than students in Workshop 1. Students completed assessments before and after each workshop and rated their interest in specific workshop activities after each activity. Guided by data from Workshop 1, we revised instructional strategies before conducting Workshop 2. Results: We found little evidence for our hypothesis that attentional style would impact educational engagement. However, video game design self-efficacy and self-determination were often positively associated with engagement. Two industry speakers, one of whom was autistic, were among the highest-rated activities. As hypothesized, video game design self-efficacy and self-determination (and unexpectedly) spatial planning improved from pre- to post-test following Workshop 1. Despite our efforts to use what we learned in Workshop 1 to improve in Workshop 2, Workshop 2 did not lead to significant improvements in outcomes. However, students highlighted instructional strategies as a strength of Workshop 2 more often than they had for Workshop 1. Educators highlighted the importance of group “temperature checks,” individualized check-ins, social–emotional support for students and educators, and fostering a positive atmosphere. Discussion: Findings suggest that interactive multimodal activities, stimulating discussions, and opportunities to engage with neurodivergent industry professionals may engage and empower diverse autistic youth.
more »
« less
- Award ID(s):
- 2005772
- PAR ID:
- 10562836
- Publisher / Repository:
- Frontiers in Education
- Date Published:
- Journal Name:
- Frontiers in Education
- Volume:
- 8
- ISSN:
- 2504-284X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract BackgroundIn this paper, we add to the scant literature base on learning from failures with a particular focus on understanding educators' shifting mindset in making‐centred learning environments. AimsThe aim of Study 1 was to explore educators' beliefs about failure for learning and instructional practices within their local making‐centred learning environments. The aim of Study 2 was to examine how participation in a video‐based professional development cycle regarding failure moments in making‐centred learning environments might have shifted museum educators' failure pedagogical mindsets. SampleIn Study 1, the sample included 15 educators at either a middle school or museum. In Study 2, the sample included 39 educators across six museums. MethodsIn Study 1, educators engaged in a semi‐structured interview that lasted between 45 and 75 min. In Study 2, the six museums video recorded professional development sessions. ResultsResults from Study 1 highlighted educators' failure pedagogical mindsets as either underdeveloped or rigid and absent of relational thinking between self‐ and youth‐failures. One key result from Study 2 was a shift from an abstract sense of failure as youth‐focused to a practical sense of failure as educator‐focused and/or relational (i.e., youth educator‐focused failure moments). ConclusionsBased on the results from Study 1 and Study 2, our research suggests that exploring an educator's relationship with failure is important and witnessing and reflecting upon their own failure pedagogical mindset in action may facilitate a shift towards a more complex and interconnected space for growth and development of both educators and youth.more » « less
-
null (Ed.)The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games, feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms.more » « less
-
null (Ed.)The Game Play and Design Framework is a project-based instructional method to engage teachers and students with mathematics content by utilizing technology as a vehicle for game play and creation. In the authors’ prior work, they created a technology tool and game editing platform, the Wearable Learning Cloud Platform (WLCP), which enables teachers and students to play, create, and experience technology-augmented learning activities. This paper describes a 14-week Game Play and Design professional development program in which middle school teachers played, designed, tested, and implemented mathematics games in the classroom with their own students. Examples are included of teacher-created games, feedback from the students’ experience designing games, and evidence of student learning gains from playing teacher-created games. This work provides a pedagogical approach for educators and students that utilizes the benefits of mobile technologies and collaborative learning through games to develop students’ higher-level thinking in STEM classrooms.more » « less
-
Faculty professional development is an important lever for change in supporting instructors to adopt research-based instructional strategies that engage students intellectually, foster learning-supportive attitudes and habits of mind, and strengthen their persistence in mathematics. Yet the literature contains few well-rationalized models for faculty development in higher education. We describe the rationale and design for a model for discipline-based faculty development to support instructional change, and we detail our implementation of this model as applied to intensive workshops on inquiry-based learning (IBL) in college mathematics. These workshops seek to foster post-secondary mathematics instructors’ adoption of IBL, to help them adapt inquiry approaches for their classrooms, and ultimately to increase student learning and persistence in science and mathematics. Based on observed faculty needs, four strands of activity help instructors develop a mental model for an IBL classroom, adapt that model to their teaching context, develop facilitation and task-design skills, and plan an IBL mathematics course. Evaluation data from surveys and observations illustrate participant responses to the workshop and its components. The model has been robust across 15 years of workshops implemented by three generations of workshop leaders and its features make it adaptive, strategic, and practical for other faculty developers.more » « less