skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-quality draft genome sequence of Paenibacillus sp. RC80, a candidate for biofuel production
Paenibacillussp. RC80 was isolated from temperate deciduous forest soil in New England. The assembled genome is a single contig with 5,977,337 bp and 97.15% estimated completion. RC80 contains features for 2,3-butanediol dehydrogenase production and pathways involved in ethanol production.  more » « less
Award ID(s):
1749206 1832210 1949882
PAR ID:
10562897
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Thrash, J Cameron
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
Microbiology resource announcements
Volume:
13
Issue:
7
ISSN:
2576-098X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Production rates reported for canopy‐forming kelps have highlighted the potential contributions of these foundational macroalgal species to carbon cycling and sequestration on a globally relevant scale. Yet, the production dynamics of many kelp species remain poorly resolved. For example, productivity estimates for the widely distributed giant kelpMacrocystis pyriferaare based on a few studies from the center of this species' range. To address this geospatial bias, we surveyed giant kelp beds in their high latitude fringe habitat in southeast Alaska to quantify foliar standing crop, growth and loss rates, and productivity ofM. pyriferaand co‐occurring understory kelpsHedophyllum nigripesandNeoagarum fimbriatum. We found that giant kelp beds at the poleward edge of their range produce ~150 g C · m−2· year−1from a standing biomass that turns over an estimated 2.1 times per year, substantially lower rates than have been observed at lower latitudes. Although the productivity of high latitudeM. pyriferadwarfs production by associated understory kelps in both winter and summer seasons, phenological differences in growth and relative carbon and nitrogen content among the three kelp species suggests their complementary value as nutritional resources to consumers. This work represents the highest latitude consideration ofM. pyriferaforest production to date, providing a valuable quantification of kelp carbon cycling in this highly seasonal environment. 
    more » « less
  2. Abstract When two or more bacterial species inhabit a shared niche, often, they must compete for limited nutrients. Iron is an essential nutrient that is especially scarce in the marine environment. Bacteria can use the production, release, and re‐uptake of siderophores, small molecule iron chelators, to scavenge iron. Siderophores provide fitness advantages to species that employ them by enhancing iron acquisition, and moreover, by denying iron to competitors incapable of using the siderophore–iron complex. Here, we show that cell‐free culture fluids from the marine bacteriumVibrio fischeriES114 prevent the growth of other vibrio species. Mutagenesis reveals the aerobactin siderophore as the inhibitor. Our analysis reveals a gene, that we nameaerE, encodes the aerobactin exporter, and LuxT is a transcriptional activator of aerobactin production. In co‐culture, under iron‐limiting conditions, aerobactin production allowsV. fischeriES114 to competitively excludeVibrio harveyi, which does not possess aerobactin production and uptake genes. In contrast,V. fischeriES114 mutants incapable of aerobactin production lose in competition withV. harveyi. Introduction ofiutA,encoding the aerobactin receptor, together withfhuCDB, encoding the aerobactin importer are sufficient to convertV. harveyiinto an “aerobactin cheater.” 
    more » « less
  3. SUMMARY Phenylpropanoids are specialized metabolites derived from phenylalanine. Glucosinolates are defense compounds derived mainly from methionine and tryptophan in Arabidopsis. It was previously shown that the phenylpropanoid pathway and glucosinolate production are metabolically linked. The accumulation of indole‐3‐acetaldoxime (IAOx), the precursor of tryptophan‐derived glucosinolates, represses phenylpropanoid biosynthesis through accelerated degradation of phenylalanine ammonia lyase (PAL). As PAL functions at the entry point of the phenylpropanoid pathway, which produces indispensable specialized metabolites such as lignin, aldoxime‐mediated phenylpropanoid repression is detrimental to plant survival. Although methionine‐derived glucosinolates in Arabidopsis are abundant, any impact of aliphatic aldoximes (AAOx) derived from aliphatic amino acids such as methionine on phenylpropanoid production remains unclear. Here, we investigate the impact of AAOx accumulation on phenylpropanoid production using Arabidopsis aldoxime mutants,ref2andref5. REF2 and REF5 metabolize aldoximes to respective nitrile oxides redundantly, but with different substrate specificities.ref2andref5mutants have decreased phenylpropanoid contents due to the accumulation of aldoximes. As REF2 and REF5 have high substrate specificity toward AAOx and IAOx, respectively, it was assumed thatref2accumulates AAOx, not IAOx. Our study indicates thatref2accumulates both AAOx and IAOx. Removing IAOx partially restored phenylpropanoid content inref2, but not to the wild‐type level. However, when AAOx biosynthesis was silenced, phenylpropanoid production and PAL activity inref2were completely restored, suggesting an inhibitory effect of AAOx on phenylpropanoid production. Further feeding studies revealed that the abnormal growth phenotype commonly observed in Arabidopsis mutants lacking AAOx production is a consequence of methionine accumulation. 
    more » « less
  4. Abstract N‐phenyl dibenzothiophene sulfoximine has been demonstrated to produce phenyl nitrene and dibenzothiopheneS‐oxide upon irradiation with UV‐A light, and dibenzothiopheneS‐oxide upon further irradiation releases triplet atomic oxygen. Thus,N‐phenyl dibenzothiophene sulfoximine exhibits a rare dual‐release capability in its photochemistry. In this work,N‐substituted dibenzothiophene sulfoximine derivatives are irradiated with UV‐A light to compare their photochemistry and quantum yield of dibenzothiopheneS‐oxide production with that ofN‐phenyl dibenzothiophene sulfoximine. BothN‐aryl andN‐alkyl derivatives of dibenzothiophene sulfoximine are examined to observe their effects on the quantum yield of the photolysis reaction. Adding electron withdrawingN‐aryl substituents is shown to increase the quantum yield of dibenzothiopheneS‐oxide production, while adding electron donatingN‐aryl substituents is shown to decrease the quantum yield. The quantum yield was slightly lowered or not increased by mostN‐alkyl substituents. Furthermore, the quantum yield was not augmented by branching and steric hindrance effects associated with theN‐alkyl substituents. These results suggest that electronic modulation of the sulfoximine bonds affects the observed photolysis reaction. 
    more » « less
  5. ABSTRACT Biologists have long been interested in understanding genetic constraints on the evolution of development. For example, noncoding changes in a gene might be favored over coding changes if they are less constrained by pleiotropic effects. Here, we evaluate the importance of coding‐sequence changes to the recent evolution of a novel anthocyanin pigmentation trait in the monkeyflower genusMimulus. The magenta‐floweredMimulus luteusvar.variegatusrecently gained petal lobe anthocyanin pigmentation via a single‐locus Mendelian difference from its sister taxon, the yellow‐floweredM. l. luteus. Previous work showed that the differentially expressed transcription factor geneMYB5a/NEGANis the single causal gene. However, it was not clear whetherMYB5acoding‐sequence evolution (in addition to the observed patterns of differential expression) might also have contributed to increased anthocyanin production inM. l. variegatus. Quantitative image analysis of tobacco leaves, transfected withMYB5acoding sequence from each taxon, revealed robust anthocyanin production driven by both alleles. Counter to expectations, significantly higher anthocyanin production was driven by the allele from the low‐anthocyaninM. l. luteus, a result that was confirmed through both a replication of the initial study and analysis by an alternative method of spectrophotometry on extracted leaf anthocyanins. Together with previously published expression studies, our findings support the hypothesis that petal pigment inM. l. variegatuswas not gained by protein‐coding changes, but instead solely via noncoding cis‐regulatory evolution. Finally, while constructing the transgenes needed for this experiment, we unexpectedly discovered two sites inMYB5athat appear to be post‐transcriptionally edited—a phenomenon that has been rarely reported, and even less often explored, for nuclear‐encoded plant mRNAs. 
    more » « less