skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel fermentations integrate traditional practice and rational design of fermented-food microbiomes
Fermented foods and beverages have been produced around the world for millennia, providing humans with a range of gastronomic, cultural, health, and scientific benefits. Building on these traditional forms, a conver- gence of factors, including culinary innovation, globalization, shifts in consumer preferences, and advances in microbiome sciences, has led to the emergence of so-called ‘novel fermentations’. In this review, we define novel fermentation as the confluence of traditional food practices and rational microbiome design. Using principles of microbial ecology and evolution, we develop a microbiological framework that outlines several strategies for producing and characterizing novel fermentations, including switching substrates, engrafting target species, assembling whole-community chimeras, and generating novel phenotypes. A subsequent analysis of existing traditional ferments points to gaps in ‘fermentation space’ where novel ferments could potentially be produced using new combinations of microbes and food substrates. We highlight some impor- tant safety and sociocultural issues presented by the repurposing and modification of microbes from tradi- tional ferments that fermented-food producers and microbiologists need to address.  more » « less
Award ID(s):
2328528 2328529
PAR ID:
10563000
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Cell Press
Date Published:
Journal Name:
Current Biology
Volume:
34
Issue:
21
ISSN:
0960-9822
Page Range / eLocation ID:
R1094 to R1108
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For thousands of years, humans have enjoyed the novel flavors, increased shelf-life, and nutritional benefits that microbes provide in fermented foods and beverages. Recent sequencing surveys of ferments have mapped patterns of microbial diversity across space, time, and production practices. But a mechanistic understanding of how fermented food microbiomes assemble has only recently begun to emerge. Using three foods as case studies (surface-ripened cheese, sourdough starters, and fermented vegetables), we use an ecological and evolutionary framework to identify how microbial communities assemble in ferments. By combining in situ sequencing surveys with in vitro models, we are beginning to understand how dispersal, selection, diversification, and drift generate the diversity of fermented food communities. Most food producers are unaware of the ecological processes occurring in their production environments, but the theory and models of ecology and evolution can provide new approaches for managing fermented food microbiomes, from farm to ferment. 
    more » « less
  2. Zufall, Rebecca (Ed.)
    Abstract Traditional fermented foods often contain specialized microorganisms adapted to their unique environments. For example, the filamentous mold Aspergillus oryzae, used in saké fermentation, has evolved to thrive in starch-rich conditions compared to its wild ancestor, Aspergillus flavus. Similarly, Aspergillus sojae, used in soybean-based fermentations like miso and shochu, is hypothesized to have been domesticated from Aspergillus parasiticus. Here, we examined the effects of long-term A. sojae use in soybean fermentation on population structure, genome variation, and phenotypic traits. We analyzed 17 A. sojae and 24 A. parasiticus genomes (23 of which were sequenced for this study), alongside phenotypic traits of 9 isolates. Aspergillus sojae formed a distinct, low-diversity population, suggesting a recent clonal expansion. Interestingly, a population of A. parasiticus was more closely related to A. sojae than other A. parasiticus populations. Genome comparisons revealed loss-of-function mutations in A. sojae, notably in biosynthetic gene clusters encoding secondary metabolites, including the aflatoxin cluster. Interestingly though, A. sojae harbored a partial duplication of a siderophore biosynthetic cluster. Phenotypic assays showed A. sojae lacked aflatoxin production, while it was variable in A. parasiticus isolates. Additionally, certain A. sojae strains exhibited larger colony diameters under miso-like salt conditions. These findings support the hypothesis that A. parasiticus is the progenitor of A. sojae and that domestication significantly reduced genetic diversity. Future research should explore how wild and food-associated strains influence sensory attributes and microbial community dynamics in fermented soy products. 
    more » « less
  3. ABSTRACT Fermented foods provide novel ecological opportunities for natural populations of microbes to evolve through successive recolonization of resource-rich substrates. Comparative genomic data have reconstructed the evolutionary histories of microbes adapted to food environments, but experimental studies directly demonstrating the process of domestication are lacking for most fermented food microbes. Here, we show that during adaptation to cheese, phenotypic and metabolomic traits of wild Penicillium molds rapidly change to produce domesticated phenotypes with properties similar to those of the industrial cultures used to make Camembert and other bloomy rind cheeses. Over a period of just a few weeks, populations of wild Penicillium strains serially passaged on cheese had reduced pigment, spore, and mycotoxin production. Domesticated strains also had a striking change in volatile metabolite production, shifting from production of earthy or musty volatile compounds (e.g., geosmin) to fatty and cheesy volatiles (e.g., 2-nonanone, 2-undecanone). RNA sequencing demonstrated a significant decrease in expression of 356 genes in domesticated strains, with an enrichment of many secondary metabolite production pathways in these downregulated genes. By manipulating the presence of neighboring microbial species and overall resource availability, we demonstrate that the limited competition and high nutrient availability of the cheese environment promote rapid trait evolution of Penicillium molds. IMPORTANCE Industrial cultures of filamentous fungi are used to add unique aesthetics and flavors to cheeses and other microbial foods. How these microbes adapted to live in food environments is generally unknown as most microbial domestication is unintentional. Our work demonstrates that wild molds closely related to the starter culture Penicillium camemberti can readily lose traits and quickly shift toward producing desirable aroma compounds. In addition to experimentally demonstrating a putative domestication pathway for P. camemberti , our work suggests that wild Penicillium isolates could be rapidly domesticated to produce new flavors and aesthetics in fermented foods. 
    more » « less
  4. Since ancient times, Korean chefs have fermented foods in an onggi, a traditional earthenware vessel. The porous structure of the onggi mimics the loose soil where lactic acid bacteria is naturally found. This permeability has been purported to facilitate the growth of lactic acid bacteria, but the details of the process remain poorly understood. In this combined experimental and theoretical study, we ferment salted napa cabbage in onggi and hermetic glassware and measure the time course of carbon dioxide concentration, which is a signature of fermentation. We present a mathematical model for carbon dioxide generation rate during fermentation using the onggi’s gas permeability as a free parameter. Our model provides a good fit for the data, and we conclude that porous walls help the onggi to ‘exhale’ carbon dioxide, lowering internal levels to those favoured by lactic acid bacteria. The positive pressure inside the onggi and the constant outflow through its walls act as a safety valve for bacteria growth by blocking the entry of external contaminants without mechanical components. We hope this study draws attention to the work of traditional artisans and inspires energy-efficient methods for fermenting and storing food products. 
    more » « less
  5. ABSTRACT Hydrophobic feedstocks such as waste cooking oil have recently been considered for microbial biotransformation due to their abundance, low cost, and unique advantage for lipid‐derived fermentation products. Most fermentations with hydrophobic substrates are conducted at the tube or flask scale (less than 1 L total volume) or with the hydrophobic substrate comprising a small fraction of the media. Low substrate concentrations require additional feeding. Alternatively, high concentrations do not require significant dilution of the oil feedstock, which reduce volumetric requirements for larger scale fermentations. However, high‐oil‐density fermentations complicate efficient mixing and mass transfer challenges which are exacerbated at larger scales. To address this, computational fluid dynamics (CFD) models were explored to simulate three‐phase (hydrophobic, hydrophilic, and gaseous) bench (3 L) and pilot scale (4000 L) bioreactors, highlighting challenges and potential considerations. Bioreactor fermentations ofYarrowia lipolyticastrain L36DGA1 with substrate loadings of 5%, 10%, 20%, 30%, 40%, and 50% (v/v) waste cooking oil were also conducted, representing one of the highest concentrations in the reported literature. This work supports future research into and implementation of high‐oil‐density fermentations at the bench and pilot bioreactor scale. 
    more » « less