Abstract Coronavirus disease 2019 (COVID‐19) has significantly impacted human health, the global economy, and society. Viruses residing on common surfaces represent a potential source of contamination for the general population. Spike binding peptide 1, SBP1 is a 23 amino acid peptide, which has micromolar binding affinity (1.3 μM) towards the spike protein receptor‐binding domain. We hypothesize that if we can covalently immobilize this SBP1 peptide in a covalent crosslinked network system, we can develop a surface that would preferentially bind spike protein and, therefore, which could limit viral spread. A series of covalently crosslinked networks of hydroxy ethyl acrylate (HEA) with different primary chain lengths and crosslinker density was prepared. Later, this network system was functionalized using 2% SBP1 peptide. Our study found that with a shorter chain length and lower crosslinker density, the HEA network system alone could capture almost 80% of the spike protein. We reported that the efficiency could be enhanced almost by 17% with higher crosslinker density.
more »
« less
Heat stable and intrinsically sterile liquid protein formulations
Abstract Over 80% of biologic drugs, and 90% of vaccines, require temperature-controlled conditions throughout the supply chain to minimize thermal inactivation and contamination. This cold chain is costly, requires stringent oversight, and is impractical in remote environments. Here, we report chemical dispersants that non-covalently solvate proteins within fluorous liquids to alter their thermodynamic equilibrium and reduce conformational flexibility. This generates non-aqueous, fluorine-based liquid protein formulations that biochemically rigidify protein structure to yield thermally stable biologics at extreme temperatures (up to 90 °C). These non-aqueous formulations are impervious to contamination by microorganismal pathogens, degradative enzymes, and environmental impurities, and display comparable pre-clinical pharmacokinetics and safety profiles to standard saline protein samples. As a result, we deliver a fluorochemical formulation paradigm that may limit the need for cold chain logistics of protein reagents and biopharmaceuticals.
more »
« less
- Award ID(s):
- 1845053
- PAR ID:
- 10563044
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The cold chain (refrigerated supply chain) is an important application of refrigeration technologies. The capacity of the cold chain industry is growing rapidly in emerging economies such as China, leading to significant environmental impacts, especially greenhouse gas (GHG) emissions. By conducting the literature review, this study begins with presenting a comprehensive overview of the cold chain industry in China. We observed that China has a large total cold warehouse capacity but low capacity per capita. Then, we directly link the example of the cold chain in China to the methods of evaluating the GHG emissions from the cold chain industry. It is observed that existing studies either primarily focus on the lifecycle of food with less consideration on the cold chain facilities or primarily focus on the lifetime of a certain stage of the cold chain (e.g., refrigerated transportation) with less consideration on food. Neither frameworks capture the entire cold chain system. Moreover, we argue that existing studies lack investigations of the cold chain GHG emissions on the national scale. To evaluate the overall GHG emissions, we recommended that one can use the bottom-up approach. First, use the lifecycle assessment (LCA) to estimate the single-unit level (e.g., one kg food, one particular refrigerated warehouse) cold chain emissions. Second, aggregate up to the national scale by the distribution patterns of the cold chain networks. Finally, we identify the crucial future issues regarding collecting cold chain lifecycle inventory data, investigating the cold chain network and the overall environmental impacts in China, regulation and technology needs for expanding the clean refrigeration technologies, and the implications of the cold chain development to water, land, and society.more » « less
-
Abstract Reversible addition‐fragmentation chain transfer (RAFT) polymerization has proven itself as a powerful polymerization technique affording facile control of molecular weight, molecular weight distribution, architecture, and chain end groups ‐ while maintaining a high level of tolerance for solvent and monomer functional groups. RAFT is highly suited to water as a polymerization solvent, with aqueous RAFT now utilized for applications such as controlled synthesis of ultra‐high molecular weight polymers, polymerization induced self‐assembly, and biocompatible polymerizations, among others. Water as a solvent represents a non‐toxic, cheap, and environmentally friendly alternative to organic solvents traditionally utilized for polymerizations. This, coupled with the benefits of RAFT polymerization, makes for a powerful combination in polymer science. This perspective provides a historical account of the initial developments of aqueous RAFT polymerization at the University of Southern Mississippi from the McCormick Research Group, details practical considerations for conducting aqueous RAFT polymerizations, and highlights some of the recent advances aqueous RAFT polymerization can provide. Finally, some of the future opportunities that this versatile polymerization technique in an aqueous environment can offer are discussed, and it is anticipated that the aqueous RAFT polymerization field will continue to realize these, and other exciting opportunities into the future.more » « less
-
Abstract Biologics, pharmaceuticals containing or derived from living organisms, such as vaccines, antibodies, stem cells, blood, and blood products are a cornerstone of modern medicine. However, nearly all biologics have a major deficiency: they are inherently unstable, requiring storage under constant cold conditions. The so-called ‘cold-chain’, while effective, represents a serious economic and logistical hurdle for deploying biologics in remote, underdeveloped, or austere settings where access to cold-chain infrastructure ranging from refrigerators and freezers to stable electricity is limited. To address this issue, we explore the possibility of using anhydrobiosis, the ability of organisms such as tardigrades to enter a reversible state of suspended animation brought on by extreme drying, as a jumping off point in the development of dry storage technology that would allow biologics to be kept in a desiccated state under not only ambient but elevated temperatures. Here we examine the ability of different protein and sugar-based mediators of anhydrobiosis derived from tardigrades and other anhydrobiotic organisms to stabilize Human Blood Clotting Factor VIII under repeated dehydration/rehydration cycles, thermal stress, and long-term dry storage conditions. We find that while both protein and sugar-based protectants can stabilize the biologic pharmaceutical Human Blood Clotting Factor VIII under all these conditions, protein-based mediators offer more accessible avenues for engineering and thus tuning of protective function. Using classic protein engineering approaches, we fine tune the biophysical properties of a protein-based mediator of anhydrobiosis derived from a tardigrade, CAHS D. Modulating the ability of CAHS D to form hydrogels make the protein better or worse at providing protection to Human Blood Clotting Factor VIII under different conditions. This study demonstrates the effectiveness of tardigrade CAHS proteins and other mediators of desiccation tolerance at preserving the function of a biologic without the need for the cold-chain. In addition, our study demonstrates that engineering approaches can tune natural products to serve specific protective functions, such as coping with desiccation cycling versus thermal stress. Ultimately, these findings provide a proof of principle that our reliance on the cold-chain to stabilize life-saving pharmaceuticals can be broken using natural and engineered mediators of desiccation tolerance.more » « less
-
The widespread production and use of multi-fluorinated carbon-based substances for a variety of purposes has contributed to the contamination of the global water supply in recent decades. Conventional wastewater treatment can reduce contaminants to acceptable levels, but the concentrated retentate stream is still a burden to the environment. A selective anion-exchange membrane capable of capture and controlled release could further concentrate necessary contaminants, making their eventual degradation or long-term storage easier. To this end, commercial microfiltration membranes were modified using pore functionalization to incorporate an anion-exchange moiety within the membrane matrix. This functionalization was performed with primary and quaternary amine-containing polymer networks ranging from weak to strong basic residues. Membrane loading ranged from 0.22 to 0.85 mmol/g membrane and 0.97 to 3.4 mmol/g membrane for quaternary and primary functionalization, respectively. Modified membranes exhibited a range of water permeances within approximately 45–131 LMH/bar. The removal of PFASs from aqueous streams was analyzed for both “long-chain” and “short-chain” analytes, perfluorooctanoic acid and perfluorobutyric acid, respectively. Synthesized membranes demonstrated as high as 90% rejection of perfluorooctanoic acid and 50–80% rejection of perfluorobutyric acid after 30% permeate recovery. Regenerated membranes maintained the capture performance for three cycles of continuous operation. The efficiency of capture and reuse can be improved through the consideration of charge density, water flux, and influent contaminant concentration. This process is not limited by the substrate and, thus, is able to be implemented on other platforms. This research advances a versatile membrane platform for environmentally relevant applications that seek to help increase the global availability of safe drinking water.more » « less
An official website of the United States government
