skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 12, 2025

Title: SoK: Where’s the “up”?! A Comprehensive (bottom-up) Study on the Security of Arm Cortex-M Systems
Award ID(s):
2238264
PAR ID:
10563137
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
USENIX Association
Date Published:
ISBN:
978-1-939133-43-4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In response to the expanding role of wind, solar, and storage, increasing demand flexibility, and a changing climate, new analytical methods and metrics to assess resource adequacy are needed. A focus has been on identifying ways to reduce risks of failure. Less attention has been directed to how new analytical approaches can inform the design of planning processes, regulatory standards, and markets. Using mixed methods and a community-engaged approach, data on community preferences and uneven distributions of impacts are used in a demonstration of a coupled socio-technical systems model that has been validated in diverse settings. The research is informed by the physical and institutional infrastructures in the Railbelt power grid of Alaska. The findings illustrate how new analytical tools can inform institutional design and facilitate more affordable, sustainable, and equitable outcomes. 
    more » « less
  2. A<sc>bstract</sc> We show that simultaneously explaining dark matter and the observed value of the muon’s magnetic dipole moment may lead to yet unexplored photon signals at the LHC. We consider the Minimal Supersymmetric Standard Model with electroweakino masses in the few-to-several hundred GeV range, and opposite sign of the Bino mass parameter with respect to both the Higgsino and Wino mass parameters. In such region of parameter space, the spin-independent elastic scattering cross section of a Bino-like dark matter candidate in direct detection experiment is suppressed by cancellations between different amplitudes, and the observed dark matter relic density can be realized via Bino-Wino co-annihilation. Moreover, the observed value of the muon’s magnetic dipole moment can be explained by Bino and Wino loop contributions. Interestingly, “radiative” decays of Wino-like neutralinos into the lightest neutralino and a photon are enhanced, whereas decays into leptons are suppressed. While these decay patterns weaken the reach of multi-lepton searches at the LHC, the radiative decay opens a new window for probing dark matter at the LHC through the exploration of parameter space regions beyond those currently accessible. To complement the current electroweakino searches, we propose searching for a single (soft) photon plus missing transverse energy, accompanied by a hard initial state radiation jet. 
    more » « less
  3. Future G networks will require more dynamic, agile support for the management of radio frequency spectrum on a fine-grained basis. The radio access network (RAN) technologies necessary to enable Dynamic Spectrum Access (DSA) have progressed significantly over the past 20 years, but the challenges of realizing the potential for DSA requires the co-evolution of the technologies, business models/market structures, and regulatory policy for wireless networks. This paper discusses a bottom-up, multi-disciplinary approach to DSA. In particular, we focus on the use of standards-based Spectrum Consumption Models (SCMs), and review on-going research to incorporate SCMs in an automated management framework based on incentive-compatible, technically-sound spectrum access contracts, or Spectrum Access Agreements (SAAs). This work is being undertaken as part of the NSF National Radio Dynamic Zone (NRDZ) research initiative and this paper provides an introduction to the core concepts of the SCM/SAA framework, project goals, and preliminary insights into how the SCM/SAA can help improve spectrum management and advance R&D efforts to enable the transition to a shared spectrum future. The SCM/SAA research represents a bottom-up effort to develop the techno-economic tools to facilitate market-based experimentation and development of spectrum sharing markets, business models, and applications to complement and render more economically viable and relevant emerging DSA technologies and top-down regulatory reforms aimed at lowering spectrum sharing barriers. 
    more » « less