ABSTRACT Hybridization and interspecific gene flow play a substantial role in the evolution of plant taxa. The eastern North American white oak syngameon, a group of approximately 15 ecologically, morphologically and genomically distinguishable species, has long been recognised as a model system for studying introgressive hybridization in temperate trees. However, the prevalence, genomic context and environmental correlates of introgression in this system remain largely unknown. To assess introgression in the eastern North American white oak syngameon and population structure within the widespreadQuercus macrocarpa, we conducted a rangewide survey ofQ. macrocarpaand four sympatric eastern North American white oak species. Using a Hyb‐Seq approach, we assembled a dataset of 3412 thinned single‐nucleotide polymorphisms (SNPs) in 445 enriched target loci including 62 genes putatively associated with various ecological functions, as well as associated intronic regions and some off‐target intergenic regions (not associated with the exons). Admixture analysis and hybrid class inference demonstrated species coherence despite hybridization and introgressive gene flow (due to backcrossing of F1s to one or both parents). Additionally, we recovered a genetic structure withinQ. macrocarpaassociated with latitude. Generalised linear mixed models (GLMMs) indicate that proximity to range edge predicts interspecific admixture, but rates of genetic differentiation do not appear to vary between putative functional gene classes. Our study suggests that gene flow between eastern North American white oak species may not be as rampant as previously assumed and that hybridization is most strongly predicted by proximity to a species' range margin. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            Comparison of Conservation Strategies for California Channel Island Oak ( Quercus tomentella ) Using Climate Suitability Predicted From Genomic Data
                        
                    
    
            ABSTRACT Management strategies, such as assisted gene flow, can increase resilience to climate change in tree populations. Knowledge of evolutionary history and genetic structure of species are needed to assess the risks and benefits of different strategies.Quercus tomentella, or Island Oak, is a rare oak restricted to six Channel Islands in California, United States, and Baja California, Mexico. Previous work has shown that Island Oaks on each island are genetically differentiated, but it is unclear whether assisted gene flow could enable populations to tolerate future climates. We performed whole‐genome sequencing on Island Oak individuals andQ. chrysolepis, a closely related species that hybridizes with Island Oak (127 total), to characterize genetic structure and introgression across its range and assess the relationship between genomic variation and climate. We introduce and assess three potential management strategies with different trade‐offs between conserving historic genetic structure and enabling populations to survive changing climates: the status quo approach; ecosystem preservation approach, which conserves the trees and their associated biodiversity; and species preservation approach, which conserves the species. We compare the impact of these approaches on predicted maladaptation to climate using Gradient Forest. We also introduce a climate suitability index to identify optimal pairs of seed sources and planting sites for approaches involving assisted gene flow. We found one island (Santa Rosa) that could benefit from the ecosystem preservation approach and also serve as a species preservation site. Overall, we find that both the ecosystem and species preservation approaches will do better than the status quo approach. If preserving Island Oak ecosystems is the goal, assisted dispersal into multiple sites could produce adapted populations. If the goal is to preserve a species, the Santa Rosa population would be suitable. This case study both illustrates viable conservation strategies for Island Oak and introduces a framework for tree conservation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2209410
- PAR ID:
- 10563284
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Evolutionary Applications
- Volume:
- 17
- Issue:
- 12
- ISSN:
- 1752-4571
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Identifying drivers of dispersal limitation and genetic differentiation is a key goal in biogeography. We examine patterns of population connectivity and genetic diversity using restriction site‐associatedDNAsequencing (RADseq) in two bumble bee species,Bombus vosnesenskiiandBombus bifarius,across latitude and altitude in mountain ranges from California, Oregon and Washington, U.S.A.Bombus vosnesenskii, which occurs across a broader elevational range at most latitudes, exhibits little population structure whileB. bifarius, which occupies a relatively narrow higher elevation niche across most latitudes, exhibits much stronger population differentiation, although gene flow in both species is best explained by isolation with environmental niche resistance. A relationship between elevational habitat breadth and genetic diversity is also apparent, withB. vosnesenskiiexhibiting relatively consistent levels of genetic diversity across its range, whileB. bifariushas reduced genetic diversity at low latitudes, where it is restricted to high‐elevation habitat. The results of this study highlight the importance of the intersect between elevational range and habitat suitability in influencing population connectivity and suggest that future climate warming will have a fragmenting effect even on populations that are presently well connected, as they track their thermal niches upward in montane systems.more » « less
- 
            ABSTRACT Adaptive introgression involves the acquisition of advantageous genetic variants through hybridisation, which are subsequently favoured by natural selection due to their association with beneficial traits. Here, we analysed speciation patterns of the kleptoparasitic spider,Argyrodes lanyuensis, through genomic analyses and tested for possible genetic evidence of adaptive introgression at the Taiwan–Philippines transition zone. Our study used highly polymorphic SNPs to demonstrate that speciation occurred when the Hualien (on Taiwan Island + Green Island) and Orchid Island + Philippine lineages separated during the early to mid‐Pleistocene. The best colonisation model suggested by approximate Bayesian computation and random forests and biogeographical analyses supported an inference of a bottleneck during speciation, an interpretation reinforced by observation of lowerFSTvalues and reduced genetic diversity of the Orchid Island + Philippines lineage. We also found the highest support for the occurrence of introgression on the youngest island (Green Island) of the Taiwan–Philippines transition zone based on the ABBA‐BABA test. Our study highlights the inference of two noteworthy species (Hualien + Green Island and Orchid Island + Philippines) based on our species delimitation tests, with gene flow between Green Island and Orchid Island that indicates introgression. The potential adaptive alleles in Green Island population, which are under balancing selection, provide initial evidence of possible rare case of adaptive introgression. This could represent an evolutionary response to a newly formed niche (or novel geographical context) lying between the tropical climate of the Philippines and the subtropical climate of Hualien, Taiwan.more » « less
- 
            ABSTRACT Many coastal marine species experienced Pleistocene gene flow between the North Pacific and Atlantic. Understanding historical connectivity between ocean basins should aid in predicting how regional faunas will respond to recent warming that has intensified trans‐Arctic dispersal. Wetland fauna of the Northwestern Atlantic may have survived in estuarine refugia throughout glacial cycles, or recolonised from the southern coast, North Pacific or Northeastern Atlantic. Here, we used multilocus genetic markers and historical climate data to investigate lineage distribution and connectivity among populations of the nominally cosmopolitan sea slugAlderia modesta, sampled from mudflats on both coasts of the North Pacific and North Atlantic. Mitochondrial DNA clades from European and North American populations were deeply divergent and reciprocally monophyletic; differences at seven polymorphic nuclear loci indicated prolonged absence of trans‐Atlantic gene flow. A Pacific ancestor likely first colonised the Atlantic during the marine biotic interchange of the middle Pliocene ~3.5 Ma. Both mtDNA phylogenetics and nuclear genotype assignments support repeated trans‐Arctic colonisation of the Northwestern Atlantic from the Pacific during inter‐glacial cycles; no gene flow was evident since the last glacial maximum, however. Time‐calibrated coalescent phylogenies, Bayesian skyline plots and haplotype networks all indicated recent population expansions in the Pacific and Europe, but not Northwestern Atlantic. In both the Pacific and Northwestern Atlantic, older lineages persisted in patchy refugia north of glacial margins, while a derived clade of Pacific haplotypes indicates northward post‐LGM expansion. The biogeographical history ofAlderiacontrasts with rocky‐shore taxa that were largely extirpated by glacial advance and recolonised from refugia following the last glacial maximum. Based on molecular differences and distinctions in radular and penial stylet morphology, we resurrect the nameAlderia harvardiensisGould 1870 forAlderiafrom the Northwestern Atlantic and North Pacific;A. modestarefers exclusively to European slugs.more » « less
- 
            Summary The response of vegetation to climate change has implications for the carbon cycle and global climate. It is frequently assumed that a species responds uniformly across its range to climate change. However, ecotypes − locally adapted populations within a species − display differences in traits that may affect their gross primary productivity (GPP) and response to climate change.To determine if ecotypes are important for understanding the response of ecosystem productivity to climate we measured and modeled growing seasonGPPin reciprocally transplanted and experimentally warmed ecotypes of the abundant Arctic sedgeEriophorum vaginatum.Transplanted northern ecotypes displayed home‐site advantage inGPPthat was associated with differences in leaf area index. Southern ecotypes exhibited a greater response inGPPwhen transplanted.The results demonstrate that ecotypic differentiation can impact the morphology and function of vegetation with implications for carbon cycling. Moreover they suggest that ecotypic control ofGPPmay limit the response of ecosystem productivity to climate change. This investigation shows that ecotypes play a substantial role in determiningGPPand its response to climate. These results have implications for understanding annual to decadal carbon cycling where ecotypes could influence ecosystem function and vegetation feedbacks to climate change.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
