skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the spectral large sieve inequality for symmetric-squares
Abstract We improve on the spectral large sieve inequality for symmetric-squares. We also prove a lower bound showing that the most optimistic upper bound is not true for this family.  more » « less
Award ID(s):
2302210
PAR ID:
10563288
Author(s) / Creator(s):
Publisher / Repository:
De Gruyter
Date Published:
Journal Name:
Forum Mathematicum
Volume:
35
Issue:
5
ISSN:
0933-7741
Page Range / eLocation ID:
1221 to 1236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We give an improved lower bound for the average of the Erdős–Hooley function , namely for all and any fixed , where is an exponent previously appearing in work of Green and the first two authors. This improves on a previous lower bound of of Hall and Tenenbaum, and can be compared to the recent upper bound of of the second and third authors. 
    more » « less
  2. Abstract MotivationSampling k-mers is a ubiquitous task in sequence analysis algorithms. Sampling schemes such as the often-used random minimizer scheme are particularly appealing as they guarantee at least one k-mer is selected out of every w consecutive k-mers. Sampling fewer k-mers often leads to an increase in efficiency of downstream methods. Thus, developing schemes that have low density, i.e. have a small proportion of sampled k-mers, is an active area of research. After over a decade of consistent efforts in both decreasing the density of practical schemes and increasing the lower bound on the best possible density, there is still a large gap between the two. ResultsWe prove a near-tight lower bound on the density of forward sampling schemes, a class of schemes that generalizes minimizer schemes. For small w and k, we observe that our bound is tight when k≡1(mod w). For large w and k, the bound can be approximated by 1w+k⌈w+kw⌉. Importantly, our lower bound implies that existing schemes are much closer to achieving optimal density than previously known. For example, with the current default minimap2 HiFi settings w = 19 and k = 19, we show that the best known scheme for these parameters, the double decycling-set-based minimizer of Pellow et al. is at most 3% denser than optimal, compared to the previous gap of at most 50%. Furthermore, when k≡1(mod w) and the alphabet size σ goes to ∞, we show that mod-minimizers introduced by Groot Koerkamp and Pibiri achieve optimal density matching our lower bound. Availability and implementationMinimizer implementations: github.com/RagnarGrootKoerkamp/minimizers ILP and analysis: github.com/treangenlab/sampling-scheme-analysis. 
    more » « less
  3. Abstract We study the universality of superconcentration for the free energy in the Sherrington–Kirkpatrick model. In [10], Chatterjee showed that when the system consists of spins and Gaussian disorders, the variance of this quantity is superconcentrated by establishing an upper bound of order , in contrast to the bound obtained from the Gaussian–Poincaré inequality. In this paper, we show that superconcentration indeed holds for any choice of centered disorders with finite third moment, where the upper bound is expressed in terms of an auxiliary nondecreasing function that arises in the representation of the disorder as for standard normal. Under an additional regularity assumption on , we further show that the variance is of order at most . 
    more » « less
  4. Abstract We study the cone of moving divisors on the moduli space $${\mathcal{A}}_{g}$$ of principally polarized abelian varieties. Partly motivated by the generalized Rankin–Cohen bracket, we construct a non-linear holomorphic differential operator that sends Siegel modular forms to Siegel modular forms, and we apply it to produce new modular forms. Our construction recovers the known divisors of minimal moving slope on $${\mathcal{A}}_{g}$$ for $$g\leq 4$$, and gives an explicit upper bound for the moving slope of $${\mathcal{A}}_{5}$$ and a conjectural upper bound for the moving slope of $${\mathcal{A}}_{6}$$. 
    more » « less
  5. Abstract We continue our study of exponent semigroups of rational matrices. Our main result is that the matricial dimension of a numerical semigroup is at most its multiplicity (the least generator), greatly improving upon the previous upper bound (the conductor). For many numerical semigroups, including all symmetric numerical semigroups, our upper bound is tight. Our construction uses combinatorially structured matrices and is parametrised by Kunz coordinates, which are central to enumerative problems in the study of numerical semigroups. 
    more » « less