skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ubiquitous Late Radio Emission from Tidal Disruption Events
Abstract We present radio observations of 23 optically discovered tidal disruption events (TDEs) on timescales of ∼500–3200 days postdiscovery. We detect nine new TDEs that did not have detectable radio emission at earlier times, indicating a late-time brightening after several hundred (and up to 2300) days; an additional seven TDEs exhibit radio emission whose origin is ambiguous or may be attributed to the host galaxy or an active galactic nucleus. We also report a new rising component in one TDE previously detected in the radio at ∼103days. While the radio emission in some of the detected TDEs peaked on a timescale ≈2–4 yr, over half of the sample still show rising emission. The range of luminosities for the sample is ∼1037–1039erg s−1, about 2 orders of magnitude below the radio luminosity of the relativistic TDE Sw J1644+57. Our data set indicates ∼40% of all optical TDEs are detected in radio hundreds to thousands of days after discovery, and that this is probably more common than early radio emission peaking at ∼102days. Using an equipartition analysis, we find evidence for a delayed launch of the radio-emitting outflows, with delay timescales of ∼500–2000 days, inferred velocities of ≈0.02–0.15c, and kinetic energies of ∼1047–1049erg. We rule out off-axis relativistic jets as a viable explanation for this population, and conclude delayed outflows are a more likely explanation, possibly from delayed disk formation. We conclude late radio emission marks a fairly ubiquitous but heretofore overlooked phase of TDE evolution.  more » « less
Award ID(s):
2221789 2224255
PAR ID:
10563410
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
ApJ
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
971
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present late-time radio/millimeter (as well as optical/UV and X-ray) detections of tidal disruption event (TDE) AT2018hyz, spanning 970–1300 d after optical discovery. In conjunction with earlier deeper limits, including those at ≈700 days, our observations reveal rapidly rising emission at 0.8–240 GHz, steeper than F ν ∝ t 5 relative to the time of optical discovery. Such a steep rise cannot be explained in any reasonable scenario of an outflow launched at the time of disruption (e.g., off-axis jet, sudden increase in the ambient density), and instead points to a delayed launch. Our multifrequency data allow us to directly determine the radius and energy of the radio-emitting outflow, and we find from our modeling that the outflow was launched ≈750 days after optical discovery. The outflow velocity is mildly relativistic, with β ≈ 0.25 and ≈0.6 for a spherical geometry and a 10° jet geometry, respectively, and the minimum kinetic energy is E K ≈ 5.8 × 10 49 and ≈6.3 × 10 49 erg, respectively. This is the first definitive evidence for the production of a delayed mildly relativistic outflow in a TDE; a comparison to the recently published radio light curve of ASASSN-15oi suggests that the final rebrightening observed in that event (at a single frequency and time) may be due to a similar outflow with a comparable velocity and energy. Finally, we note that the energy and velocity of the delayed outflow in AT2018hyz are intermediate between those of past nonrelativistic TDEs (e.g., ASASSN-14li, AT2019dsg) and the relativistic TDE Sw J1644+57. We suggest that such delayed outflows may be common in TDEs. 
    more » « less
  2. Abstract We present detailed radio observations of the tidal disruption event (TDE) ASASSN-19bt/AT 2019ahk, obtained with the Australia Telescope Compact Array, the Atacama Large Millimeter/submillimeter Array, and the MeerKAT radio telescopes, spanning 40–1464 days after the onset of the optical flare. We find that ASASSN-19bt displays unusual radio evolution compared to other TDEs, as the peak brightness of its radio emission increases rapidly until 457 days post-optical discovery and then plateaus. Using a generalized approach to standard equipartition techniques, we estimate the energy and corresponding physical parameters for two possible emission geometries: a nonrelativistic spherical outflow and a relativistic outflow observed from a range of viewing angles. We find that the nonrelativistic solution implies a continuous energy rise in the outflow fromE∼ 1046toE∼ 1049erg with outflow speedβ≈ 0.05, while the off-axis relativistic jet solution instead suggestsE≈ 1052erg with Lorentz factor Γ ∼ 10 at late times in the maximally off-axis case. We find that neither model provides a holistic explanation for the origin and evolution of the radio emission, emphasizing the need for more complex models. ASASSN-19bt joins the population of TDEs that display unusual radio emission at late times. Conducting long-term radio observations of these TDEs, especially during the later phases, will be crucial for understanding how these types of radio emission in TDEs are produced. 
    more » « less
  3. Abstract We present the discovery of a second radio flare from the tidal disruption event (TDE) AT2020vwl via long-term monitoring radio observations. Late-time radio flares from TDEs are being discovered more commonly, with many TDEs showing radio emission thousands of days after the stellar disruption, but the mechanism that powers these late-time flares is uncertain. Here, we present radio spectral observations of the first and second radio flares observed from the TDE AT2020vwl. Through detailed radio spectral monitoring, we find evidence for two distinct outflow ejection episodes or a period of renewed energy injection into the preexisting outflow. We deduce that the second radio flare is powered by an outflow that is initially slower than the first flare but carries more energy and shows tentative indication of accelerating over time. Through modelling the long-term optical and UV emission from the TDE as arising from an accretion disk, we infer that the second radio outflow launch or energy injection episode occurred approximately at the time of the peak accretion rate. The fast decay of the second flare precludes environmental changes as an explanation, while the velocity of the outflow is at all times too low to be explained by an off-axis relativistic jet. Future observations that search for any link between the accretion disk properties and late-time radio flares from TDEs will aid understanding of what powers the radio outflows in TDEs and confirm if multiple outflow ejections or energy injection episodes are common. 
    more » « less
  4. Abstract We present a systematic search for tidal disruption events (TDEs) using radio data from the Variables and Slow Transients (VAST) Pilot Survey conducted using the Australian Square Kilometre Array Pathfinder. Historically, TDEs have been identified using observations at X-ray, optical, and ultraviolet wavelengths. After discovery, a few dozen TDEs have been shown to have radio counterparts through follow-up observations. With systematic time-domain radio surveys becoming available, we can now identify new TDEs in the radio regime. A population of radio-discovered TDEs has the potential to provide several key insights including an independent constraint on their volumetric rate. We conducted a search to select variable radio sources with a single prominent radio flare and a position consistent within 2σof the nucleus of a known galaxy. While TDEs were the primary target of our search, sources identified in this search may also be consistent with active galactic nuclei exhibiting unusual flux density changes at the timescales probed, uncharacteristically bright supernovae, or a population of gamma-ray bursts. We identify a sample of 12 radio-bright candidate TDEs. The timescales and luminosities range from ∼6 to 230 days and ∼1038to 1041erg s−1, respectively, consistent with models of radio emission from TDEs that launch relativistic jets. After calculating the detection efficiency of our search using a Monte Carlo simulation of TDEs, and assuming all 12 sources are jetted TDEs, we derive a volumetric rate for jetted TDEs of 0.80 0.23 + 0.31 Gpc−3yr−1, consistent with previous empirically estimated rates. 
    more » « less
  5. ABSTRACT Recent radio observations and coincident neutrino detections suggest that some tidal disruption events (TDEs) exhibit late-time activities, relative to the optical emission peak, and these may be due to delayed outflows launched from the central supermassive black hole. We investigate the possibility that jets launched with a time delay of days to months, interact with a debris that may expand outwards. We discuss the effects of the time delay and expansion velocity on the outcomes of jet breakout and collimation. We find that a jet with an isotropic-equivalent luminosity of $$\lesssim 5 \times 10^{45}\, {\rm erg\, s}^{-1}$$ is likely to be choked for a delay time of $$\sim 3$$ months. We also study the observational signatures of such delayed choked jets. The jet–debris interaction preceding the breakout would lead to particle acceleration and the resulting synchrotron emission can be detected by current and near-future radio, optical and X-ray telescopes, and the expanding jet-driven debris could explain late-time radio emission. We discuss high-energy neutrino production in delayed choked jets, and the time delay can significantly alleviate the difficulty of the hidden jet scenario in explaining neutrino coincidences. 
    more » « less