skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 22, 2026

Title: TensorRight: Automated Verification of Tensor Graph Rewrites
Tensor compilers, essential for generating efficient code for deep learning models across various applications, employ tensor graph rewrites as one of the key optimizations. These rewrites optimize tensor computational graphs with the expectation of preserving semantics for tensors of arbitrary rank and size. Despite this expectation, to the best of our knowledge, there does not exist a fully automated verification system to prove the soundness of these rewrites for tensors of arbitrary rank and size. Previous works, while successful in verifying rewrites with tensors of concrete rank, do not provide guarantees in the unbounded setting. To fill this gap, we introduce TensorRight, the first automatic verification system that can verify tensor graph rewrites for input tensors of arbitrary rank and size. We introduce a core language, TensorRight DSL, to represent rewrite rules using a novel axis definition, called aggregated-axis, which allows us to reason about an unbounded number of axes. We achieve unbounded verification by proving that there exists a bound on tensor ranks, under which bounded verification of all instances implies the correctness of the rewrite rule in the unbounded setting. We derive an algorithm to compute this rank using the denotational semantics of TensorRight DSL. TensorRight employs this algorithm to generate a finite number of bounded-verification proof obligations, which are then dispatched to an SMT solver using symbolic execution to automatically verify the correctness of the rewrite rules. We evaluate TensorRight’s verification capabilities by implementing rewrite rules present in XLA’s algebraic simplifier. The results demonstrate that TensorRight can prove the correctness of 115 out of 175 rules in their full generality, while the closest automatic, bounded-verification system can express only 18 of these rules.  more » « less
Award ID(s):
2338739
PAR ID:
10563487
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
52nd ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2025)
Date Published:
Subject(s) / Keyword(s):
Semantics and reasoning Logic and verification Automated Reasoning Unbounded Verification, Tensor Compilers, Denotational Semantics
Format(s):
Medium: X
Location:
Denver, CO
Sponsoring Org:
National Science Foundation
More Like this
  1. Tensor compilers, essential for generating efficient code for deep learning models across various applications, employ tensor graph rewrites as one of the key optimizations. These rewrites optimize tensor computational graphs with the expectation of preserving semantics for tensors of arbitrary rank and size. Despite this expectation, to the best of our knowledge, there does not exist a fully automated verification system to prove the soundness of these rewrites for tensors of arbitrary rank and size. Previous works, while successful in verifying rewrites with tensors of concrete rank, do not provide guarantees in the unbounded setting. To fill this gap, we introduce TensorRight, the first automatic verification system that can verify tensor graph rewrites for input tensors of arbitrary rank and size. We introduce a core language, TensorRight DSL, to represent rewrite rules using a novel axis definition, calledaggregated-axis, which allows us to reason about an unbounded number of axes. We achieve unbounded verification by proving that there exists a bound on tensor ranks, under which bounded verification of all instances implies the correctness of the rewrite rule in the unbounded setting. We derive an algorithm to compute this rank using the denotational semantics of TensorRight DSL. TensorRight employs this algorithm to generate a finite number of bounded-verification proof obligations, which are then dispatched to an SMT solver using symbolic execution to automatically verify the correctness of the rewrite rules. We evaluate TensorRight’s verification capabilities by implementing rewrite rules present in XLA’s algebraic simplifier. The results demonstrate that TensorRight can prove the correctness of 115 out of 175 rules in their full generality, while the closest automatic,bounded-verification system can express only 18 of these rules. 
    more » « less
  2. This paper presents Giallar, a fully-automated verification toolkit for quantum compilers. Giallar requires no manual specifications, invariants, or proofs, and can automatically verify that a compiler pass preserves the semantics of quantum circuits. To deal with unbounded loops in quantum compilers, Giallar abstracts three loop templates, whose loop invariants can be automatically inferred. To efficiently check the equivalence of arbitrary input and output circuits that have complicated matrix semantics representation, Giallar introduces a symbolic representation for quantum circuits and a set of rewrite rules for showing the equivalence of symbolic quantum circuits. With Giallar, we implemented and verified 44 (out of 56) compiler passes in 13 versions of the Qiskit compiler, the open-source quantum compiler standard, during which three bugs were detected in and confirmed by Qiskit. Our evaluation shows that most of Qiskit compiler passes can be automatically verified in seconds and verification imposes only a modest overhead to compilation performance. 
    more » « less
  3. Machine knitting is a well-established fabrication technique for complex soft objects, and both companies and researchers have developed tools for generating machine knitting patterns. However, existing representations for machine knitted objects are incomplete (do not cover the complete domain of machine knittable objects) or overly specific (do not account for symmetries and equivalences among knitting instruction sequences). This makes it difficult to define correctness in machine knitting, let alone verify the correctness of a given program or program transformation. The major contribution of this work is a formal semantics for knitout, a low-level Domain Specific Language for knitting machines. We accomplish this by using what we call the "fenced tangle," which extends concepts from knot theory to allow for a mathematical definition of knitting program equivalence that matches the intuition behind knit objects. Finally, using this formal representation, we prove the correctness of a sequence of rewrite rules; and demonstrate how these rewrite rules can form the foundation for higher-level tasks such as compiling a program for a specific machine and optimizing for time/reliability, all while provably generating the same knit object under our proposed semantics. By establishing formal definitions of correctness, this work provides a strong foundation for compiling and optimizing knit programs. 
    more » « less
  4. An efficient optimizing compiler can perform many cascading rewrites in a single pass, using auxiliary data structures such as variable binding maps, delayed substitutions, and occurrence counts. Such optimizers often perform transformations according to relatively simple rewrite rules, but the subtle interactions between the data structures needed for efficiency make them tricky to write and trickier to prove correct. We present a system for semi-automatically deriving both an efficient program transformation and its correctness proof from a list of rewrite rules and specifications of the auxiliary data structures it requires. Dependent types ensure that the holes left behind by our system (for the user to fill in) are filled in correctly, allowing the user low-level control over the implementation without having to worry about getting it wrong. We implemented our system in Coq (though it could be implemented in other logics as well), and used it to write optimization passes that perform uncurrying, inlining, dead code elimination, and static evaluation of case expressions and record projections. The generated implementations are sometimes faster, and at most 40% slower, than hand-written counterparts on a small set of benchmarks; in some cases, they require significantly less code to write and prove correct. 
    more » « less
  5. Ta-Shma, Amnon (Ed.)
    The Tensor Isomorphism problem (TI) has recently emerged as having connections to multiple areas of research within complexity and beyond, but the current best upper bound is essentially the brute force algorithm. Being an algebraic problem, TI (or rather, proving that two tensors are non-isomorphic) lends itself very naturally to algebraic and semi-algebraic proof systems, such as the Polynomial Calculus (PC) and Sum of Squares (SoS). For its combinatorial cousin Graph Isomorphism, essentially optimal lower bounds are known for approaches based on PC and SoS (Berkholz & Grohe, SODA '17). Our main results are an Ω(n) lower bound on PC degree or SoS degree for Tensor Isomorphism, and a nontrivial upper bound for testing isomorphism of tensors of bounded rank. We also show that PC cannot perform basic linear algebra in sub-linear degree, such as comparing the rank of two matrices (which is essentially the same as 2-TI), or deriving BA=I from AB=I. As linear algebra is a key tool for understanding tensors, we introduce a strictly stronger proof system, PC-Inv, which allows as derivation rules all substitution instances of the implication AB=I → BA=I. We conjecture that even PC-Inv cannot solve TI in polynomial time either, but leave open getting lower bounds on PC-Inv for any system of equations, let alone those for TI. We also highlight many other open questions about proof complexity approaches to TI. 
    more » « less